practicum - Monday 17:20 -- K4
lecture (chapter 7) - Monday 10:40 -- K12
 
    ============================================================
Practicum 1 (February 14)

introduction: ODE -- definition, concept of solution

ODE type: with separable variables

demo:		x'=3t², x'=5x

class:		x'=x²+1, x'=e^x(t+1) , x'=(x^2-x)/t
============================================================
Practicum 2 (February 21)

demo:	x'=2√|x|e^(-t)

ODE type:	1st order linear: integrating factor

demo:	x'+(cos t)x = (1+t)e^(-sin t)

class:	
		x'-x=te^t
		x'-x/t = t^2e^t
		x-x/t^2 = 1/t^3
		x'+2x=cos t

ODE type:	Bernoulli (reduction to linear)
============================================================
Practicum 3 (February 28)

ODE type:	(Bernoulli) and homogeneous

demo:	
		x' -4x/t = t√x
		t²x'+tx = t²+x²

class:	
		1.	x'=exp(x/t)+x/t
		2.	x'-2tx = 2t³x²
		3.	x' = (x-t)/(x+t)
		4.	x' - 9t²x = (t⁵+t²)\root{3}\of{x²}
		5.	t²x' = x² + 2tx
		6.	2txx' + t²-x² = 0
============================================================
Practicum 4 (March 7)

Elementary qualitative analysis for x'=f(t,x) 


demo:	x'=e^x(t+1) , x'=2√|x|e^(-t)	

class:
		1. x'=t²(x+1)
		2. x'=(x-1)/(t-1)
		3. x'=t(x+1)
		4. x'=x/t+t²
		5. x'=2tx-2

Remark on symmetry
============================================================
Practicum 5 (March 14)

demo:	x'=x²+t²-1

EQA for autonomous systems in R²

demo:	x'=x²-2x+y , y'=y(1-x)

class:
		1. x'=x(1-x)-xy , y'=-2y+xy
		2. x'=x(1-x/2-y) , y'=y(2-2x-y)
		3. x'=x(2-2x-y) , y'=y(1-x/2=y)
============================================================
Practicum 6 (March 21)

[More like a lecture than a practicum.]

1. ODE classification (general system, autonomous, ...)

2. Existence and uniqueness (Peano and Picard).
Examples.

3. Stability and asymptotic stability.
Definitions. Theorem on linearized stability.

Example:  
	x'=x(2-2x-y) , y'=y(1-x/2=y)
	E₁=(1,1) is asymptotically stable
============================================================
Practicum 7 (March 28)

In class: investigate stability of equilibria

1.	x'=2x+y-1 , y'=sin(x)-y²+1
2.	x'=ln(5-2x-2y), y'=exp(xy)-1
3.	x'=(1-x-y/(x+1/4))x, y'=(1-4y/3x)y
4.	x''+ αx' + sin(x) = 0
5.	x'=1-x²-y², y'=z²-x-y, z'=z²-1

Theorem on stable/unstable direction.

Examples:
	
	x'=(1-x/2-y)x, y'=(2-2x-y)y where E=(2/3,2/3)
	x'+sin(x)=0 where E=(0,0) and (0,π)
============================================================
Practicum 8 (April 4)

first integral

demo:	x'' + sin(x)  (pendulum continued)
		x' = (x-t)/(x+t)
		x'=x²y , y' = xy²

In class:

1.	x'=xy³ , y'=xy+xy²
2.	x'=x+y, y'=x²-y²
3.	x''+x = 0 (later as demo)
4.	x''+x^2-x=0
5.	x'=xy , y'=xz , z'=yz
============================================================
Practicum 9 (April 11)

Linearization theorems - remarks on the proof.
Verification of 1st integral (Theorem P.7)
Examples:  x'=x²y , y' = xy², SIR model

In class: as last time, including Lotka-Volterra system
============================================================
Practicum 10 (April 25)

topic: linear homogeneous ODE with constant coefficients
		(L-1) system of n equations
		(L-2) 1 equation of n-th order

HOWTO solve (L-2): characteristic polynomial,
fundamental system (via exponentials/polynomials)

demo:	x"+2x'-3x=0, x"+x=0, x"+2x'+x=0

In class:

1.	x""-3x"+2x=0
2.	x'''+3x''+3x'+x=0
3.	x""+18x"+81x=0
4.	x'=10x-6y, y'=18x-11y
5.	x'=y, y'=z, z'=y
============================================================
Practicum 11 (May 2)

demo:	x'=2x+y, y'=x-2y

theory: Theorem P-8, matrix exponential

In class:

1.	x'=-12x-16y, y'=9x+12y (nilpotent)
2.	x'=-y, y'=x (±i)
3.	x'=y+2z, y'=3z, z'=0 (nilpotent)
4.	A³+A²=0 (spectrum? exponential?)
============================================================
Practicum 12 (May 9)

Matrix exponential - some properties

Problem: classification of 2x2 linear systems

case (1): λ₁<λ₂<0
case (2): 0<λ₂<λ₁

topic: numerical software & numerical methods

demo: "plotdf" command in Maxima (https://maxima.sourceforge.io/)

example continued:   x'=x²-2x+y , y'=y(1-x)

... first integral: V = x²(1+y)²+y²+2y³/3
============================================================
Practicum 13 (May 16)

Example finished (quickly).
Topic: numerical methods - simple examples
of first and second order difference method
     
 
    ============================================================
Lecture 1 (April 4)

game theory - an introduction.
keywords: player, strategy, payoff

key concept: Nash equilibrium (N.e.)

Examples: 
	rock-scissors-paper (RSP), passenger-inspector
	prisoner's dilemma (PD)

generalizations: mixed strategies, repeated games
			
============================================================
Lecture 2 (April 11)

Definitions: normal form 2-player game. 
Pure and mixed strategies.
Payoff matrices. Best reply.

Lemma 7.1. Characterisation of best replies as 
a convex combination of pure best replies.

Definition: Nash equilibrium (N.e.)

Theorem 7.1. Existence of Nash equilibrium.

Example: computing N.e. for "passenger-inspector" game.

Remarks. 1) generalization: N-player (normal form) game
2) extended form game (random moves, incomplete information)
Zermelo chess theorem.


============================================================
Lecture 3 (April 25)

Simplification: only symmetric games from now on.

Definition: evolutionary stable strategy (ESS).
Lemma 7.2. Characterisation of (ESS) - relation to N.e.

Replicator dynamics: axiomatic approach.

Useful observation: game normalization.

Example: non-symmetric RSP game (without proofs mostly)

============================================================
Lecture 4 (May 2)

RD: elementary derivation

Theorem 7.2. Well-posedness of (RD); invariance of support.

Theorem 7.3. Equilibria of (RD) vs. N.e.
Theorem 7.4. ESS => asymptotically stable for (RD)

Example (continuation): non-symmetric RSP game

============================================================
Lecture 5 (May 9)

Theorem 7.4. -- very brief comment on the proof
Question: Does (RD) increase π(x) ? (the average gain)?
Example: HD, extension HDBR
Theorem 7.5. [Fisher's fundamental theorem of natural selection.]
RD - critique & improvement - random "mutations" (not finished)

============================================================
Lecture 6 (May 16)

RD - with mutations: simplified with uniform mutations
Example: PD repeated PD with mutations
Lemma 7.3. more on the stationary points of RD
Theorem 7.6. negative criterion for periodic orbit and stat. points