Practicum 1&2 - February 19
Introduction: ODE -- definition, concept of solution
ODE type: with separated variables
demo: x'=3t², x'=5x , x' = -t/x
class: x'=x²+1, x'=e^x(t+1) , x'=(x^2-x)/t
Theorem P.1 - sketch of the proof
demo: x'=x²+1 -> interval discussion
------------------------------------------------------------
ODE type: 1st order linear
Theorem P.2 + sketch of the proof
demo: x'+(cos t)x = (1+t)e^(-sin t)
class: x'-x=te^t
x'-x/t = t^2e^t
x-x/t^2 = 1/t^3
x'+2x=cos t
demo: tx'-3x=t³ + initial condition: x(1)=-1
ODE type: Bernoulli - solve by substitution z=x^(1-α)
demo: x' -4x/t = t√x
discussion of the intervals!! (x>0 ⇒ z>0)
------------------------------------------------------------
Practicum 3 - March 4
demo: x'=2√|x|.exp(-t)
x'-tx=-x³exp(-t²)
class: (and demo no. 3)
1. x'=exp(x/t)+x/t
2. x'-2tx = 2t³x²
3. x' = (x-t)/(x+t)
4. x' - 9t²x = (t⁵+t²)\root{3}\of{x²}
5. t²x' = x² + 2tx
6. 2txx' + t²-x² = 0
------------------------------------------------------------
Practicum 4 - March 11
EQA = elementary qualitative analysis
demo: x'=e^x(t+1), x'=2√|x|e^{-t}
class:
1. x'=t²(x+1)
2. x'=(x-1)/(t-1)
3. x'=t(x+1)
4. x'=x/t+t²
5. x'=2tx-2
Theorem P.3 & P.4 [Peano & Picard]
Remark on solution symmetries
------------------------------------------------------------
Practicum 5 - March 18
EQA = elementary qualitative analysis [2]
demo: x'=2tx-2; (+ symmetry w.r. to origin)
demo: x"+x=0 and x'=x²-2x+y , y'=y(1-x)
class:
1. x'=x(1-x)-xy , y'=-2y+xy
2. x'=x(1-x/2-y) , y'=y(2-2x-y)
3. x'=x(2-2x-y) , y'=y(1-x/2-y)
------------------------------------------------------------
Practicum 6 - March 25
demo: x'=3y² , y'=-2x (1st integral: y³+x²=c)
class: find 1st integral(s) for the systems:
1. x'=y, y'=-x
2. x'=y, y'=x-x²
3. x'=xy, y'=xz, z'=yz
theory: stability, asymptotic stability, instability
linearization principle
solution of u'=Au via eigenvalues/eigenvectors
Theorem P.5 [Linearized (in)stability theorem]
------------------------------------------------------------
Practicum 7 - April 8
theory: matrix of linearization, Theorem P.5 and P.5
[linearized (in)stability, (un)stable direction]
demo: HW6 x'=x(2-x-y), y'=x(1-y)
theory: first integral - definition, Theorem P.7
[characterization of 1st integral]
demo: x'=-y, y'=x
x'=x²y, y'=xy²
------------------------------------------------------------
Practicum 8 - April 15
demo: x''+sin(x)=0
class: x'=-2x, y'=-y
x'=2x, y'=-y
x'=-2x, y'=-2y
x'=-2y, y'=2x
------------------------------------------------------------
Practicum 9 - April 22
theory: linear homogeneous ODEs with constant coeffs.
(α) system of 1st order equations
(β) one equation of higher order
class:
1. x""-3x"+2x=0
2. x'''+3x''+3x'+x=0
3. x""+18x"+81x=0
4. x'=10x-6y, y'=18x-11y
5. x'=y, y'=z, z'=y
simpler problems: x"+2x'-3x=0, x"+x=0, x"+2x'+x=0
------------------------------------------------------------
Practicum 10 - April 29
theory: characteristic polynomial -> fundamental system
note on initial conditions
demo: x"+x=0, x"+2x'+x=0
theory: hyperbolic points / matrices
Hartman-Grobman theorem
classification of 2x2 hyperbolic matrices:
1) node 2) saddle point 3) comples roots
... discussion of cases 1) and 2)
------------------------------------------------------------
Practicum 11 - May 6
project presentations: HW1, HW2, HW4.1, HW5, HW7.1
demo: Euler's (1st order) method
curvature method (2nd order)
class: matrix exponentials for A=
(1) [0 1; 0 0]
(2) diag(-1 2)
(3) [1 -2 ;2 1]
(4) [a -b ; +b a]
theory: notions of stability,
(counter)example to Theorem P.5:
x'=-2y³, y'=x
------------------------------------------------------------
Practicum 12 - May 20
Practicum 11 - May 6
Lyapunov (strict) function
examples: pendulum, Prac 11/(1)
class: x'=-y-x³, y'=x-y³
x'=-x-y², y'=xy-x²y
y'=2y+x³, y'=-x+y³ (**)