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and hence by {2.41), equating the two limits
L{Aa(t)) = ™.
This is just the expression obtained in (2.37).
The foregoing illustrates that the mathematical modeling of a
sudden impulse is achieved rigorously by the treatment given in
terms of the Riemann-Stieltjes integral.

Hereafter, for the sake of convenience, we will abuse the notation
further and simply write

L(8,) =&~

Example 2.30. A pellet of mass m is fired from a gun at time t =0
with a muzzle velocity vg. If the pellet is fired into a viscous gas, the
equation of motion can be expressed as
d?x dx ,
Moz k— = mu s, x(0)=0, ¥(0)=0,
where x(t) is the displacement at time t > 0, and k > 0 is a constant.
Here, x'(0) = 0 corresponds to the fact that the pellet is initially at

rest fort < 0.
Taking the transform of both sides of the equation, we have
m s L{x) + ks L(x) = m vy L(8) = muy,

mUg Vo

£ = ms2 +ks  S(s+k/m)
Writing
vy _ A B
st km s ST Rm
we find that
a=l% po MW
k' k'
and

_mu/k muyy/k
s s+k/m
The solution given by the inverse transform is

Miy _k,
?C(t)z T(] — &g m )

o { FIGURE 2,12

z'(t)]

o

0 t FIGURE 2.13

(Figure 2.12). Computing the velocity,
X(t) = voe ",

and lim,_,o+ '(f) = vy, whereas lim;¢- ¥'(t) = 0, indicating the
instantaneous jump in velocity at t = 0, from a rest state to the
value vy (Figure 2.13).
Another formulation of this problem would be
d?x dx
" T T
Solving this version yields the same results as above.

0,  x(0)=0, ¥(0)=u.

Example 2.31. Suppose that at time ¢ = 0 an impulse of 1V is
applied to an RCL circuit (Figure 2.6), and for ¢ < 0, I(t) = 0 and the
charge on the capacitor is zero. This can be modeled by the equation

R Y frf(t)dr = 8(t)
ot CJo - '
where L, R, and C are positive constants, and
.. L R? ... L p R?
—_ > — n — —.
@ C 4" (1) C 4
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Applying the Laplace transform gives
1
Ls L(I) + RLD + - £ =1,

that is,
S
L) =
& Ls?+Rs+1/C
_ b3
T L(s+ R/2LY + (1/LC — R2/4L%)]

Setting a = R/2L, b* = 1/LC — R2/4L% > 0, assuming (i), then,

8
LLD = a1

s+a a

= — 2.42
(s+ap+b (s+a}+b* (2:42)

and so
e—ar

I(t) = 7 (cos bt—% sinbt).

Assuming (ii), (2.42) becomes

e — =
()_(s+a)2—b2_(s+a)2—b2 (s + a)? — b*

with @ = R/2L, b* = R¥/4L? — 1/LC > 0. Consequently,

E—ar

h bt — - sinh bt
Ity= I (cos 2 sin ) :
A Mechanical System. We consider a mass m suspended on a
spring that is rigidly supported from one end (Figure 2.14). The rest
position is denoted by x = 0, downward displacement is represented
by x > 0, and upward displacement is shown by x < 0.

To analyze this situation let

i. k > 0be the spring constant from Hooke's law,

ii. a(dx/dt) be the damping force due to the medium (e.g., air),
where @ > 0, that is, the damping force is proportional to the
velocity,

iii. F(f) represents all external impressed forces on m.
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position

FIGURE 2.14

Newton's second law states that the sum of the forces acting on m
equals md*x/dt?, that is,

d’x dx
m—&t—zz—kx—aa-l—}?(t),
or
d*x dx
m—&t—2+a-g£+kx=F(t). (2.43)

This equation is called the equation of motion.

Remark 2.32. If a = 0, the motion is called undamped. If a # 0,
the motion is called damped. If F(t) = 0 (i.e., no impressed forces),
the motion is called free; otherwise it is forced.

We can write (2.43) with F(t) = 0 as
d’x adx k
ar?  omadt m
Setting a/m = 2b, k/m = A2, we obtain
NPV JNPE N 2
= - +3x=0. (2.44)
The characteristic equation is
r2 4+ 2br + 1% =0,

with roots

r=—bk b — A2
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2(t)

FIGURE 2.15

The resulting behavior of the system depends on the relation be-
tween b and A. One interesting case is when 0 < b < 1, where we
obtain

x(t) = e ™ (c; sin VAT — D%t + ¢y cos v AE — b),

which after some algebraic manipulations (setting ¢ = JE+
cos ¢ = c3/¢) becomes

x(1) = ce” ™ cos(v A2 — B2t — ¢).

This represents the behavior of damped oscillation (Figure 2.15).
Let us apply a unit impulse force to the above situation.

Example 2.33. For 0 < b < A, suppose that

d*x dx

4 2h = 4 M= (8 0y=10, x(0)=0,

At k= d0,  A(0)=0, ¥(0)
which models the response of the mechanical system to a unit
impulse.

Therefore,
L)+ 2B LY+ AL = L&) =1,
s0 that
1
L=

1
Do)

Exercises 2.5 8’7

and

— ; —bt o1 2 12
x(t) = g e sm(mt),

which again is a case of damped oscillation.

Exercises 2.5

1. Solve
Y _ B gy s 0) = y/(0) = 0
LD hy=in, wO=y=0

2. The response of a spring with no damping (a = 0) to a unit
impulse at t = 0 is given by

d*x

dt?
~ Determine x(t).
3. Suppose that the current in an RL circuit satisifies

m—s + kx = §(t), x(0) =0, ¥(0)=0.

LdI+RI—Et
At - ()r

where L, and R are constants, and E(t) is the impressed voltage.
- Find the response to a unit impulse at ¢ = 0, assuming E(t) = 0
fort < 0.
4. Solve
T v a® = s
Mm—+a— +kx=
dt? dt @
form=1a=2k=1,x0)=x(0)=0.
5. Show that if f satisfies the conditions of the derivative theorem
(2.7), then

L7 (sF(s)) = f'(£) + F(0)8(t).
6. Show that

ol (;;2) = 5(0) — 2ae~".
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7. A certain function U(x) satisfies
1
U -PU=—28 x>0,
where a and b are positive constants. If U(x) = 0 as x — c0, and
U(—x) = U(x), show that
1 b
Ux)= — e« ™,

() 2ab

[Hint: Take U(0) = ¢, U'(0) = 0, where ¢ is tobe determined.]

2.6 Asymptotic Values

Two properties of the Laplace transform are sometimes useful in
determining limiting values of a function f(t)ast — Qorast — o9,
even though the function is not known explicitly. This is achieved
by examining the behavior of £(f ().

Theorem 2.34 (Initial-Value Theorem). Suppose that f, f’ satisfy
the conditions as in the derivative theorem (2.7), and F(sy = L(f(1)).
Then

foHy = lim f(y=limsF(s) (s real).

ProoF. By the general property of all Laplace transforms (of func-
tions), we know that C(f’(t)) = G(s) — 0 as s — oo (Theorem 1.20).
By the derivative theorem,

G(s5) = sF(s) — f(01), s > a.
Taking the limit,

T — 1 _ oot

0= lim G(s) = lim (sF(s) — F(OM).
Therefore,
+ — -
f(0")y= SILTOSF(S)-

Example 2.35. If

s+1
WO =506+
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then

: s+1 _
o= (5=igem) !

Theorem 2.36 (Terminal-Value Theorem). Suppose that f satis-

fies the conditions of the derivative theorem (2.7) and furtheymore that
lim,, o f(t) exists. Then this limiting value is given by

,1_1{& f(ty= 21_1;13 sF(s) (s real),
where F(s) = E(f )}

Proor. First note that f has exponential order & = 0 since it is
bounded in view of the hypothesis. By the derivative theorem,

G(s) = L(f'(D) =sF(s) = f(0") (s > 0.
Taking the limit, _
lm G(s) = lim s F(s) ~ F(0). (2.45)

Furthermore,

o0
lim G(s) = lim f e~ (1) dt
§—=0 =0 fp

= / " £ dt, (2.46)
4]

since in this particular instance the limit can be passed inside the
integral (see Corollary A.4). The integral in (2.46) exists since it is
nothing but

fo F(tydt = }lr&](; F(tydr
= Tim [f(r) — (0"} (2.47)
Equating (2.45), (2.46), and (2.47),

m () =l s 0

Example 2.37. Let f(t) = sint. Then

- . 8
i%SF(s) = {im 241 0




