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Finite-dimensional limiting dynamics

for dissipative parabolic equations

A. V. Romanov

Abstract. For a broad class of semilinear parabolic equations with compact attrac-
tor A in a Banach space E the problem of a description of the limiting phase
dynamics (the dynamics on A) of a corresponding system of ordinary differential

equations in RN is solved in purely topological terms. It is established that the
limiting dynamics for a parabolic equation is finite-dimensional if and only if its
attractor can be embedded in a sufficiently smooth finite-dimensional submanifold
M ⊂ E. Some other criteria are obtained for the finite dimensionality of the limiting
dynamics:

a) the vector field of the equation satisfies a Lipschitz condition on A;
b) the phase semiflow extends on A to a Lipschitz flow;
c) the attractor A has a finite-dimensional Lipschitz Cartesian structure.

It is also shown that the vector field of a semilinear parabolic equation is always
Hölder on the attractor.

Bibliography: 19 titles.

Introduction

Many non-stationary problems in mathematical physics can be written as a dis-
sipative semilinear parabolic equation

∂tu = −Au+ F (u) (1)

in a Banach space E with norm | · |. Here u(t) ∈ E, ∂tu is the strong derivative
with respect to t, and A is a linear sectorial operator acting in E with dense domain
D(A), compact resolvent, and spectrum in the right half-plane. We assume that for
some α ∈ [0, 1) the non-linear function F is in C2(Eα, E), where Eα = D(Aα) has
norm |u|α = |Aαu|. It is also assumed that equation (1) generates in Eα a semiflow
{Φt}t>0 of class C2 with a compact attractor A: a maximal bounded invariant set
that uniformly attracts balls in Eα as t→ +∞.

The idea of the finite-dimensional behaviour of solutions of parabolic equations
for large time goes back to the work of Hopf [1]. The contemporary understanding
of this amounts to the equivalence in some sense or another of the asymptotic
behaviour (as t → +∞) of the dynamics of equation (1) and of some system of
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ordinary differential equations (ODEs) in RN . Under our conditions the attractor
A has finite fractal dimension, as follows immediately from the well-known result
of Mane [2] on invariant sets of smooth compact maps acting in Banach spaces.
However, the structure of A can be very irregular, and thus finite dimensionality
alone of the attractor of equation (1) is not yet enough to determine an ODE with
analogous dynamics as t→ +∞.

More radical approaches to the problem of a finite-dimensional description of
the asymptotic dynamics of parabolic equations involve the concept of an inertial
manifold: a smooth finite-dimensional invariant surface M ⊂ Eα containing the
attractor and exponentially attracting all the solutions u(t) as t→ +∞. The exis-
tence of such a manifold (with a suitable Cartesian structure) enables us to easily
construct an inertial form: an ODE in RN completely describing the behaviour of
the solutions of the original problem for large time. The theory of inertial manifolds
has fairly stringent requirements on the spectral properties of the linear part of (1)
(see, for example, [3]–[5]), and this restricts its area of application.

In this article we discuss a characteristic of evolution equations that is inter-
mediate between finite dimensionality of the attractor and existence of an inertial
manifold. We say that the equation (1) has finite-dimensional limiting dynamics if
there is an ODE

ẋ = h(x) (2)

with a Lipschitz vector field h(x) and phase flow {St}t∈R in RN , and also a compact
set V ⊂ RN that is invariant for {St} such that the semiflow {Φt} on the attractorA
is Lipschitz-conjugate to the semiflow {St}t>0 on V . It is thereby required that the
limiting regimes of the original problem are ‘embedded’ in the limiting regimes of
some ODE in RN . In fact, the ODE (2) describes the dynamics of equation (1) on
A. The existence of an inertial manifold implies for (1) the finite dimensionality of
the limiting dynamics (the dynamics on the attractor).

Our main result (Theorem 1.5) is that the possibility of embedding the attractor
A in a sufficiently smooth finite-dimensional submanifoldM ⊂ Eα ensures that the
limiting dynamics of equation (1) is finite-dimensional. More precisely, the limiting
dynamics is finite-dimensional if A ⊂ M, where M is a compact C2-submanifold
of finite dimension in Eα. The converse is true with the smoothness condition
M ∈ Lip instead of M ∈ C2 under a slight additional restriction on the operator A
in (1).

Thus, at least one of the following possibilities is realized for every equation of
the form (1):

a) the dynamics on A is finite-dimensional;
b) the attractor A is not contained in any finite-dimensional C2-manifold.

The second assumption looks fairly exotic. In any case there is at present no
example of a parabolic equation with such a complicated structure of the attractor.
All that is known is an example [6] of a scalar reaction-diffusion equation not having
a normally hyperbolic inertial manifold of class C1 in a cube in R4. For semilinear
hyperbolic equations the possibility of the situation b) does in fact follow from
results in [7], although the specifics of problems of this type are very essential.
On the other hand, it follows from recent results of Foiaş and Olson [8] that in a
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Hilbert space any compact set of finite fractal dimension can be embedded in a
finite-dimensional Hölder manifold.

Furthermore, we establish (Theorem 1.6) several alternative criteria for finite
dimensionality of the limiting dynamics of equation (1). One is the Lipschitz con-
dition |G(u)−G(v)|α 6 K|u− v|α for the vector field G = −A + F on the attrac-
tor A. Another criterion is that the semiflow {Φt} on A must be injective and
must extend to a flow that is Lipschitz in the Eα-metric. A third criterion for finite
dimensionality of the limiting dynamics is the requirement that the attractor have
a Lipschitz Cartesian structure on the lowest modes of the operator A. In other
words, for some a > 0 the finite-dimensional spectral projection P corresponding
to the part of the spectrum of A with Reλ 6 a must satisfy an estimate of the form
|u − v|α 6 K|P (u − v)|α on A, where K = K(a). Yet another criterion reduces
to an analogous estimate for an arbitrary finite-dimensional projection P that is
bounded on Eα (and also on Eα−1 if E is non-reflexive), and a last criterion reduces
to the equivalence on A of the metrics of the spaces Eα and Eα−1, where Eα−1

is the completion of E in the norm |Aα−1u|. We explain that the conclusions in
Theorem 1.6 are valid under the same restriction as in Theorem 1.5 on the linear
operator A (for example, in the Hilbert case all operators with ‘leading’ normal
part work).

Of interest in connection with the first of the criteria for finite dimensionality of
the limiting dynamics (the vector field is of Lipschitz class on A) is Theorem 4.1,
which says that for equations of the form (1) the vector field G = −A+F is always
Hölder on the attractor in the Eα-metric, with exponent β = (1− α)/(2− α). We
remark that the Navier–Stokes system with a sufficiently regular external force on
a two-dimensional torus Ω admits an estimate |G(u) − G(v)|α 6 K|u − v|βα for
u, v ∈ A, any β < 1, and a number K = K(β,A). Here E is a suitable subspace of
L2(Ω;R2) and α > 1/2.

§ 1. Main results

In an infinite-dimensional separable Banach space E with norm | · | we consider
the evolution equation (1) with a linear operator A and a non-linearity F . The
closed operator A with dense domain D(A) ⊂ E is assumed to be sectorial, that is,
(−A) generates an analytic semigroup {e−tA}t>0 of bounded operators on E. Here
and below we use facts from [9] about semilinear parabolic equations (sometimes
without comment). For a sectorial operator A with spectrum σ(A) in the half-plane
Reλ > 0 (we shall write Reσ(A) > 0) it is possible to define unambiguously the
powers Aθ for all θ ∈ R along with a corresponding scale {Eθ} of Banach spaces
by letting Eθ be D(Aθ) for θ > 0 and the completion of E in the norm |Aθu| for
θ < 0. In both cases the spaces Eθ are equipped with the graph norm |u|θ = |Aθu|.
We remark that if E is a Hilbert space, then the spaces Eθ are also Hilbert spaces.
For ν < θ the embedding Eθ ⊂ Eν is dense and continuous:

|u|ν 6 c(ν, θ)|u|θ (3)

for u ∈ Eθ. Suppose also that for some 0 6 α < 1 the function F : Eα → E is twice
continuously differentiable (F ∈ C2(Eα, E)).

The above requirements on A and F ensure in general only the local (for
t > 0) solubility in Eα of equation (1) with initial condition u(0) ∈ Eα. However,
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we shall assume that (1) is dissipative in Eα. This means the existence on Eα of a
continuous semiflow {Φt}t>0, Φtu0 = u(t) with u0 = u(0), and the existence in Eα

of a bounded set U such that ΦtB ⊂ U for every ball B ⊂ Eα and for t > τ(B). It
turns out that {Φt} is a semiflow of class C2 on Eα and Φtu ∈ E1 for u ∈ Eα and
t > 0. But if in addition the operator A is discrete (has compact resolvent) and
F is bounded on balls B ⊂ Eα, then for t > τ(B) the evolution operators Φt are
compact on B.

Thus, we start with the following basic hypotheses about the coefficients and the
dynamics of equation (1).

(H1) The linear operator A is sectorial and discrete, and it has a countable spec-
trum σ(A) with Reσ(A) > 0.

(H2) For some α ∈ [0, 1) the function F is in C2(Eα, E) and is bounded on balls
in Eα.

(H3) Equation (1) is dissipative in Eα.

We remark that | argλ| < ϕ < π/2 for λ ∈ σ(A), where ϕ = ϕ(A).
A set N ⊂ Eα is said to be invariant if ΦtN = N for any t > 0. Under the

hypotheses (H1)–(H3) the semiflow {Φt} has a compact maximal invariant set: the
attractor A ⊂ Eα (in this connection see [4], § 2). Each invariant set N is contained
in E1 (in particular, A ⊂ E1), and if N is bounded in Eα, then N ⊂ A.

According to the hypothesis (H2) the function F : Eα → E is locally Lipschitz
and hence

|F (u)− F (v)| 6 L|u− v|α (4)

on every compact set K ⊂ Eα, with L = L(K).
For arbitrary metric spaces V1 and V2 we denote by Lip(V1, V2) the class of

Lipschitz maps from V1 to V2. A continuous flow {St} on a space V with metric ρ
is said to be Lipschitz if St ∈ Lip(V, V ) for all t ∈ R. In this case (see [10], 8A.10)

ρ(Stx, Sty) 6 Keω|t|ρ(x, y) (5)

for x, y ∈ V and t ∈ R, with constants K > 1 and ω > 0 independent of (x, y, t). It
is well known that an ODE ẋ = h(x) with h ∈ Lip(RN ,RN) generates a Lipschitz
flow in RN .

Definition 1.1. Suppose that K is a compact invariant set in Eα. We say that
the dynamics on K is finite-dimensional if for some N > 1 there exist an ODE
ẋ = h(x) with Lipschitz vector field h(x) in RN and a phase flow {St}, along with
a Lipschitz embedding g : K→ RN , such that gΦtu = Stgu for u ∈ K and t > 0.

Remark 1.2. It follows at once from this definition that the evolution operators
Φt are injective on K for t > 0. Setting Φ−t = g−1S−tg, we get a Lipschitz flow
{Φt}t∈R on K.

Definition 1.3. If the dynamics on the attractor A is finite-dimensional, then we
say that the limiting dynamics of equation (1) is finite-dimensional.

Let I be the identity operator on Banach spaces, and let ‖ · ‖ and ‖ · ‖θ be the
norms of bounded linear operators on E and Eθ, respectively. We arrange the
set {µ = Reλ : λ ∈ σ(A)} in increasing order (0 < µ1 < µ2 < · · · ). Denote by
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Pn the (bounded on E) spectral projection of A corresponding to the part of the
spectrum with Reλ 6 µn (see [11], § 3.2.2) and let Qn = I − Pn. The projection
Pn is finite-dimensional (of rank k > n) and PnA = APn on D(A) = E1. The
finite-dimensional subspace PnE is generated by eigenvectors and associated (root)
vectors of A, and thus PnE = PnE

θ ⊂ Eθ and Pn, Qn are bounded projections
on Eθ for any θ > 0 (see (3)). It is important to note that Pn and Qn commute
with the operators e−tA for t > 0. This follows, for example, from the standard
representation of e−tA as the strong limit asm→∞ of the bounded linear operators
(I +m−1tA)−m on E.

The following estimates are known ([9], § 1.5):

|e−tAu|α 6M(n, α, ωn)t−αe−ωnt|u| (6)

for n > 1, u ∈ QnE, and arbitrary ωn ∈ (0, µn+1). In some of the statements below
it must be assumed that the linear operator A satisfies the following additional
requirement.

Hypothesis 1.4. There is a sequence of positive numbers ωn < µn+1 such that
ωn →∞ as n→∞ and

inf
n>1

ωα−1
n M(n, α, ωn)‖Qn‖ = 0, (7)

where M(n, α, ωn) is the minimal constant in (6).

If E is a Hilbert space and the operator A is self-adjoint, then ‖Qn‖ = 1 and
a straightforward computation gives us that M(n, α, ωn) 6 (αµn+1/(eε))

α with
ε = µn+1− ωn, so that Hypothesis 1.4 is satisfied, for example, with ωn = µn+1/2.
The same is true for a normal operator A. In the general case, however, the
quantities ‖Qn‖ and M(n, α, ωn) can have any order of growth with respect to n
and ωn, depending on the spectral properties of A.

Our main result is the following.

Theorem 1.5. If the attractor A is contained in a compact finite-dimensional
C2-submanifold M of Eα, then the limiting dynamics of equation (1) is finite-
dimensional. Conversely, if the limiting dynamics of (1) is finite-dimensional, the
operator A satisfies Hypothesis 1.4, and the Pn denote its spectral projections, then
the attractor A is part of a finite-dimensional Lipschitz manifold M in Eα that is
the graph of a function f ∈ Lip(PnE

α, QnE
α) for some n > 1 and for Qn = I−Pn.

The conclusions of the theorem are valid when A is replaced by any compact
invariant set K ⊂ Eα if we are speaking of the “finite-dimensional dynamics on K”
in the sense of Definition 1.1.

Let G(u) = −Au+ F (u) be the vector field of equation (1). If N is an invariant
subset of Eα, then G(u) ∈ Eθ for u ∈ N for any θ < 1 (see [9], Theorem 3.5.2).

We now formulate a statement giving several different necessary and sufficient
conditions for finite dimensionality of the dynamics of (1) on an arbitrary compact
invariant set K ⊂ A and, in particular, on the attractor A.
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Theorem 1.6. Suppose that the operator A satisfies Hypothesis 1.4 and K is a
compact invariant subset of Eα. Then the following assertions are equivalent.

(FD) The dynamics on K is finite-dimensional.
(VF) |G(u)−G(v)|α 6 C|u− v|α on K, where C = C(K).
(Fl) The semiflow {Φt} on K is injective and extends to a flow that is Lipschitz

in the Eα-metric.
(GrF) For some n > 1 the spectral projection Pn satisfies the estimate |u− v|α 6

C|Pn(u− v)|α on K, where C = C(K, n).
(Gr) There is a finite-dimensional projection P that is bounded on Eα (and on

Eα−1 if E is non-reflexive) and such that |u− v|α 6 C|P (u− v)|α on K,
where C = C(K, P ).

(EM) The metrics of Eα and Eα−1 are equivalent on K.

When K = A the theorem gives five different criteria for finite dimensionality
of the limiting dynamics of equation (1). The condition (VF) means that the
vector field G is Lipschitz on K. The condition (EM) reduces (see (3)) to the
estimate |A(u − v)|α−1 6 C|u − v|α−1 on K. According to the condition (GrF)
the map Pn : K → PnE

α is a Lipschitz embedding, which implies that K is part
of a Lipschitz graph over PnE

α. The meaning of the condition (Gr) is the same,
but with the spectral projection Pn replaced by a finite-dimensional projection of
general form.

Remark 1.7. The closed logical cycle (VF)→(Fl)→(GrF)→(Gr)→(EM)→(VF) is
in fact established for Theorem 1.6, along with (FD)→(Fl) and (Gr)+(VF)→(FD).
We point out that the restriction 1.4 on the operator A is used here only in the
implication (Fl)→(GrF).

In connection with the necessity of verifying Hypothesis 1.4 we note that for the
given equation (1) the representation of the vector field as the sum of the linear
part (−A) and the non-linearity F is not unique. Let A0 = A− TAα, where T is a
bounded linear operator on E, and suppose that the spectrum σ(A0) is countable
and Reσ(A0) > 0. From results in [9] (§ 1.4) it follows that the operator A0 with
domain D(A0) = D(A) is sectorial and discrete. Moreover, for 0 6 θ 6 1 the
spaces Eθ and Eθ0 = D(Aθ0) coincide, and the graph norms in them are equivalent.
From this we see that equation (1), written in the form ∂tu = −A0u+ F0(u) with
F0 = F − TAα, satisfies the main hypotheses (H1)–(H3), and it is possible that A0

satisfies Hypothesis 1.4 but A does not. Thus, we can say that in Theorems 1.5
and 1.6 the linear operator A must satisfy Hypothesis 1.4 up to perturbations of
the form TAα with the operator T bounded on E.

§ 2. Proof of Theorem 1.5

Here we derive the main theorem from Theorem 1.6 (to be proved later).

For θ ∈ R and k > 1 we denote by Π(θ, k) the set of projections of rank k that are
bounded on Eθ. Introduction of the metric ρ(P,Q) = ‖P −Q‖θ turns Π(θ, k) into
a complete metric space. The following assertion is a special case of Lemma 9.2.1
in [9], which is an infinite-dimensional variant of the Whitney embedding theorem.
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Lemma 2.1. Let θ ∈ R and suppose that M is a compact C2-submanifold of finite
dimension m in Eθ. Then there is a projection P ∈ Π(θ, k), k = 2m+ 1, such that
the restriction P

∣∣
M

is a C2-diffeomorphism of the manifold M onto PM ⊂ PEθ.

We need finite-dimensional projections that are simultaneously bounded in dif-
ferent spaces Eθ, and in this connection we must take into consideration the dual
spaces Yθ = (Eθ)′.

If the original space E is reflexive, then the adjoint A′ of the sectorial operator
A defined in E is densely defined and sectorial in X = E′ ([9], § 7.3), and this
enables us to define a scale {Xθ} of Banach spaces corresponding to A′. For any
θ ∈ R the maps Aθ : Eθ → E and (A′)θ : X → X−θ are isometries, and the same
is true for the adjoint map (Aθ)′ : X → Yθ. It follows from elementary properties
of sectorial operators (see [9], Ch. 1) that (Aθ)′ = (A′)θ, and hence Yθ = X−θ and
the embedding Yν ⊂ Yθ is continuous and dense for θ > ν.

Suppose now that E is an arbitrary Banach space. Since the embedding Eθ ⊂ Eν
is continuous and dense for θ > ν, it follows that the embedding Yν ⊂ Yθ is
continuous. Furthermore, the set Yν of functionals is total, that is, if ζ(u) = 0 for
all ζ ∈ Yν and some u ∈ Eθ, then u = 0. But this implies ([11], § 1.4.5) that Yν is
weak-∗ dense in Yθ for θ > ν.

We show that there are ‘sufficiently many’ finite-dimensional projections that
are bounded simultaneously in the different spaces Eθ.

Lemma 2.2. For θ > ν and k > 1 the set Π(θ, k)∩Π(ν, k) of projections is strongly
dense in Π(θ, k) (norm dense if E is reflexive).

Proof. If P ∈ Π(θ, k), then

Pu =
k∑
i=1

ζi(u)ui (8)

for u ∈ Eθ, where {ui} and {ζi} are linearly independent mutually conjugate
(ζi(uj) = δij) systems of k vectors in the spaces Eθ and Yθ, respectively. In fact,
for every projection P of the form (8) it is necessary to construct a sequence of
projections of the same form on Eθ with (χi, vi) instead of (ζi, ui), where χi ∈ Yν ,
χi → ζi in the weak-∗ topology in Yθ, and vi → ui strongly in Eθ. If for some k
functionals χi ∈ Yν the matrix W = {aij} = {χj(ui)} is invertible, then the system
{vi} ⊂ Eθ of vectors with vi = Tui will be conjugate to {χi}, where T is the linear
operator defined in the k-dimensional subspace PEθ with matrix W−1 in the basis
{ui}. Using the weak-∗ denseness of Yν in Yθ we choose functionals χi ∈ Yν that are
weak-∗ convergent to ζi in Yθ. Then the corresponding k × k matrices W converge
to I, and hence the operators T converge to I in PEθ. Therefore, vi = Tui → ui
strongly in Eθ, as required.

But if the space E is reflexive, then Yν is strongly dense in Yθ and there are
functionals χi ∈ Yν that converge strongly to ζi in Yθ, which implies the uniform
convergence of the projections constructed according to the same scheme. The
lemma is proved.

Lemma 2.3. Suppose that θ > ν, k > 1, and M is a compact C1-submanifold of
finite dimension in Eθ. Then for any projection P ∈ Π(θ, k) there is a sequence of
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projections Pl ∈ Π(ν, k) that converge strongly (in Π(θ, k)) to P and are such that
|(P − Pl)(u− v)|θ 6 εl|u− v|θ on M and εl = o(1) as l →∞.

Proof. Lemma 2.2 ensures the existence of the necessary projections Pl, but without
an estimate on M. The norms ‖Pl‖θ are uniformly bounded. Therefore, on every
compact set K ⊂ Eθ the functions Pl : K → Eθ are equicontinuous, and then the
Arzelà–Ascoli theorem gives us that Pl → P uniformly on K. We set ψ(u, v) =
(u − v)/|u − v|θ for u, v ∈ Eθ (u 6= v). Everything will be proved if we establish
that the values ψ(u, v) for u, v ∈M form a relatively compact set in Eθ.

Let {ul} and {vl} be any two sequences of elements of M with ul 6= vl. Since
the manifoldM is compact, it can be assumed that ul → u and vl → v as l →∞.
If u 6= v, then ψ(ul, vl) → ψ(u, v) in Eθ. Therefore, we consider the case u = v.
Let Q denote a projection that is bounded from Eθ onto the tangent space of the
manifold M at u ∈ M. We remark that wl = ψ(Qul, Qvl) ∈ QEθ and, in view
of the finite dimensionality of QEθ, we can assume that wl → w in Eθ. Further,
we set κl = |Qul − Qvl|θ/|ul − vl|θ. It follows from the definition of the tangent
space of a smooth manifold that κl → 1 and ul − vl = Qul − Qvl + |ul − vl|θzl,
with |zl|θ = o(1) as l → ∞. From this we see that ψ(ul, vl) = κlwl + zl. Hence,
ψ(ul, vl)→ w in Eθ as l →∞ and the lemma is proved.

For convenience of reference we formulate a vector version of the well-known
theorem on extension of Lipschitz functions.

Lemma 2.4. Suppose that f0 ∈ Lip(V,X), where V is a compact subset of RN ,
and let X be a Banach space. Then there is a function f ∈ Lip(RN , X) such that
f = f0 on V .

The lemma can be proved in the same way as in the scalar case X = R1 (see
[12], Ch. 6, Theorem 3).

We can now proceed directly to the proof of Theorem 1.5.

Proof of Theorem 1.5. Suppose that the attractor A is contained in a compact C2-
manifoldM of dimension m in Eα. By Lemma 2.1, there is a projection P of rank
k = 2m+ 1 that is bounded on Eα and such that |u− v|α 6 C|P (u− v)|α on M.
By Lemma 2.3 (with θ = α, ν = α − 1), there is a rank-k projection P0 that is
bounded on Eα and on Eα−1 and such that |(P − P0)(u − v)|α 6 q|u− v|α on M,
with q = 1/(2C). For u, v ∈M we have that

|P0(u− v)|α > |P (u− v)|α − |(P − P0)(u− v)|α > q|u− v|α.
But then Theorem 1.6 with K = A (the implication (Gr)→(FD)) ensures finite
dimensionality of the limiting dynamics for equation (1).

Conversely, suppose that the limiting dynamics of (1) is finite-dimensional and
the operator A satisfies Hypothesis 1.4. According to Theorem 1.6, the condition
(GrF) holds for K = A, that is, for some n > 1 the spectral projection Pn is bi-
Lipschitz on A in the metric of Eα. Furthermore, V = PnA is a compact set in
the finite-dimensional subspace PnE

α. Let f0(x) = P−1
n x − x for x ∈ V . Then

f0 ∈ Lip(V,QnE
α). With the help of Lemma 2.4 we extend f0 to a function

f ∈ Lip(PnE
α, QnE

α). The graph M = {u ∈ Eα : u = x + f(x), x ∈ PnEα
}

is a
finite-dimensional Lipschitz manifold in Eα, andM ⊃ A. The proof of Theorem 1.5
is complete.
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§ 3. Proof of Theorem 1.6

We begin with two auxiliary statements, of which the first is a generalization of
a similar fact for ODEs. Recall that if an invariant set N is contained in Eα, then
N ⊂ E1 and G(N) ⊂ Eθ for any θ < 1.

Lemma 3.1. Let N be an invariant subset of Eα and suppose that |G(u)−G(v)|θ 6
C|u − v|θ on N for some θ < 1, where C = C(N, θ). Then the semiflow {Φt} is
injective on N and extends to a flow that is Lipschitz in the Eθ-metric.

Proof. It follows from the invariance of N that for any u0 ∈ N there is at least
one integral curve u(t) with u(0) = u0 that is defined for all t ∈ R and lies in N.
Integrating equation (1) we find that

u(t) = u(0) +

∫ t

0

G
(
u(s)

)
ds.

If u0, v0 ∈ N and t > 0, then

|u(t)− v(t)|θ 6 |u0 − v0|θ + C

∫ t

0

|u(s)− v(s)|θ ds.

Gronwall’s inequality now gives us the estimate |u(t)−v(t)|θ 6 |u0−v0|θ exp(C|t|).
For t < 0 the same estimate can be obtained by the substitution t = −τ , and this
yields what is required.

The lemma remains valid also for θ > 1 if it is known a priori that N ⊂ Eθ and
G(N) ⊂ Eθ.

The following statement about the regularity of the vector field of equation (1)
is of independent interest.

Lemma 3.2. The function u→ G(Φtu) is Lipschitz in the Eα-metric on compact
sets K ⊂ Eα for any fixed t > 0.

Proof. Let Ψ(t, u) = Φtu for t > 0 and u ∈ Eα. Since F ∈ C2(Eα, E) according to
the hypothesis (H2), it follows from [9] (Corollary 3.4.6) that Ψ ∈ C2(R+×Eα, Eα).
For fixed t and u the partial derivative Ψt(t, u) is a linear operator acting from R to
Eα according to the rule τ 7→ τG(Φtu). Since Ψ ∈ C2, the function (t, u) 7→ G(Φtu)
is a C1-function with respect to (t, u), and hence for fixed t the function u 7→ G(Φtu)
is a C1-function and, a fortiori, a locally Lipschitz function from Eα to Eα. But K
is a compact set in Eα and thus G(Φt) is a Lipschitz function on K for any t > 0.
The lemma is proved.

Let us now proceed to the proof of Theorem 1.6. We break it up into separate
parts.

(VF)→(Fl). It suffices to use Lemma 3.1 with N = K and θ = α.
(Fl)→(GrF). Every solution u(t) of equation (1) satisfies the relation

u(t) = e−A(t−t0)u(t0) +

∫ t

t0

e−A(t−s)F (u(s)) ds (9)
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for t > t0 and u(t0) ∈ Eα. If u(0) = u0 ∈ K, then by the condition (Fl) there is a
unique solution u(t) = Φtu0 ∈ K that is defined for all t ∈ R. We apply to both
sides of (9) the projection operator Qn (with arbitrary n > 1 for the time being)
and we set t = 0 and u(0) = u. Since Qne

At0 = eAt0Qn and the compact set K is
bounded in E, the estimate (6) gives us that |QneAt0u(t0)|α = o(1) as t0 → −∞.
This leads to the equality

Qnu =

∫ 0

−∞
eAsQnF (Φsu) ds,

with the integral convergent in the norm of Eα. By Hypothesis 1.4, there are
numbers ωn ∈ (0, µn+1) such that ωn → ∞ as n → ∞ and the constant Mn =
M(n, α, ωn) in (6) satisfies (7). Using the estimate (6) with t = −s together
with (4), we find that

|Qn(u− v)|α 6 LMn‖Qn‖
∫ 0

−∞
(−s)−αeωns|Φsu−Φsv|α ds (10)

for u, v ∈ K ⊂ A. For the Lipschitz (by the condition (Fl)) flow {Φt} on K we have
an exponential (in the metric of Eα) estimate (5) for divergence of trajectories, with
some constants K > 1 and ω > 0. If ωn > ω, then (10) implies that |Qn(u−v)|α 6
qn|u− v|α, where qn = KLMn‖Qn‖bn and

bn =

∫ 0

−∞
(−s)−αe(ωn−ω)s ds,

so that bn = O(ωα−1
n ) as n → ∞. According to (7), infn>1 qn = 0. Let n be such

that qn < 1. Since Pn +Qn = I, it follows that

|Qn(u− v)|α 6
qn

1− qn
|Pn(u− v)|α, |u− v|α 6

1

1− qn
|Pn(u− v)|α

for u, v ∈ K, and the derivation of (GrF) from (Fl) is complete.
(GrF)→(Gr). In the case when E is reflexive the implication is trivial. But if

E is not reflexive, then it suffices to establish that the spectral projection Pn is
bounded on Eα−1. From the integral representations of the linear operators Pn
and Aα−1 in terms of the resolvent R(λ;A) (see [11], §§ 3.2.2, 3.3.3) it follows (with
the help of the Hilbert identity) that PnA

α−1 = Aα−1Pn on E. This yields what
is required.

(Gr)→(EM). We begin with the existence in Π(α, k) (for some k > 1) of a
projection P that is bi-Lipschitz on K in the metric of Eα. It is clear that the
set of such projections is open in Π(α, k). If E is reflexive, then by Lemma 2.2
(with θ = α and ν = α − 1) we can assume that P is bounded also on Eα−1 (in
the non-reflexive case this is postulated). Since PEα ⊂ Eα−1 and since all norms
are equivalent in the finite-dimensional space PEα, it follows that

|u− v|α 6 C|P (u− v)|α 6 C1|P (u− v)|α−1 6 C2|u− v|α−1
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for u, v ∈ K, with a constant C2 independent of u, v. The opposite inequality (with
a different constant) follows from (3), and therefore the metrics of Eα and Eα−1

are equivalent on K.
(EM)→(VF). Since |u−v|α 6 C|u−v|α−1 on K, use of the estimates (3) and (4)

gives us that

|G(u)−G(v)|α−1 6 |A(u− v)|α−1 + |F (u)− F (v)|α−1

6 |u− v|α + c(α− 1, 0)|F (u)− F (v)|
6 q|u− v|α 6 qC|u− v|α−1 (11)

for u, v ∈ K, with q = 1 + Lc(α− 1, 0). Thus, the vector field G is Lipschitz in the
Eα−1-metric on the compact invariant set K ⊂ Eα, and hence by Lemma 3.1 with
θ = α−1 the semiflow {Φt} is injective on K and extends to a flow that is Lipschitz
in the Eα−1-metric. Since the metrics of Eα and Eα−1 are equivalent on K, this
implies the property (Fl), that is, |Φtu −Φtv|α 6 q(t)|u − v|α on K for t ∈ R. By
Lemma 3.2 with t = 1,

|G(u)−G(v)|α 6 C1|Φ−1u−Φ−1v|α 6 C1q(−1)|u− v|α
on K ⊂ A, and the implication (EM)→(VF) is proved.

Accordingly, we have shown that for an arbitrary compact invariant set K in
Eα the conditions (VF), (Fl), (GrF), (Gr), and (EM) are equivalent. It remains
to establish their connection with the property (FD) of finite dimensionality of the
dynamics.

(FD)→(Fl). This is a direct consequence of Definition 1.1 (see Remark 1.2).
(Gr)→(FD). As already shown, (Gr) implies (VF). According to (Gr) there is a

projection P of finite rankN that is bounded onEα and that implements a Lipschitz
embedding K → PEα. Further, the equation (1) ∂tu = G(u) on K is projected
into the equation ẋ = h0(x) for x = Pu, with Lipschitz (by the condition (VF))
function h0(x) = PG(P−1x) on the compact set V = PK in PEα. Identifying
PEα with RN and using Lemma 2.4 to extend the function h0 ∈ Lip(V,RN ) to a
function h ∈ Lip(RN ,RN), we get an ODE ẋ = h(x) in RN with phase flow {St}.
Since ∂t(PΦtP

−1x)
∣∣
t=0

= h0(x) for x ∈ V , it follows (by the uniqueness theorem

for ODEs) that Stx = PΦtP
−1x on V . But x = Pu, and therefore StPu = PΦtu

for u ∈ K, which implies the finite dimensionality of the dynamics on K. The proof
of Theorem 1.6 is complete.

§ 4. Regularity of the vector field on the attractor

In connection with the necessary and sufficient conditions obtained in Theo-
rem 1.6 for finite dimensionality of the limiting dynamics, it is of interest to deter-
mine how close these conditions are to real characteristics of arbitrary equations of
the form (1). This can be done, at least in the cases (EM) and (VF). It turns out
that the operators A and G = −A+F are always Hölder on the attractor A in the
metrics of Eα−1 and Eα, respectively, with the exponent depending only on α.

The question of the regularity on the attractor of the vector field of a semi-
linear parabolic equation has already been discussed in the context of the theory
of exponential attractors in [13], and also in Robinson’s paper [14]. It is known,
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in particular, that the operator G is Hölder on A in the metric of E with exponent
β = 1 − θ−1 if the attractor A is bounded in Eθ with θ > 1. However, here we
are considering the question of regularity of the vector field G on A in the metric
of Eα.

As above, we assume the basic hypotheses (H1)–(H3).

Theorem 4.1. The following estimates hold for u, v ∈ A:

|A(u− v)|α−1 6 C|u− v|βα−1, (12a)

|G(u)−G(v)|α 6 C|u− v|βα, (12b)

where β = (1− α)/(2− α) and C = C(A).

We note that β = 1/2 for α = 0, β = 1/3 for α = 1/2, and β → 0 as α → 1.
The estimates (12) are actually valid for a broad class of subsets of the space Eα.

Lemma 4.2. Let β = (1 − α)/(2 − α). If N is a bounded subset of E1, then the
estimate (12a) holds on N. If N is a compact subset of Eα and the set G(N) is
bounded in E1, then the estimate (12b) holds on N.

Proof. As in [13] and [14], we use interpolation in the scale {Eθ} of Banach spaces
(see [9], § 1.4). In our case this yields

|u− v|α 6K|u− v|βα−1|u− v|
1−β
1

for u, v ∈ N, with a constant K = K(A). If N is bounded in E1, then this yields
the estimate (12a). Similarly,

|G(u)−G(v)|α 6 K|G(u)−G(v)|βα−1|G(u)−G(v)|1−β1

if G(u), G(v) ∈ E1. But |G(u)−G(v)|α−1 6 q|u− v|α by (11), and this yields the
estimate (12b) on N when the set G(N) is bounded in E1. The lemma is proved.

Thus, to prove Theorem 4.1 we need boundedness of the sets A and G(A) in E1.

Lemma 4.3. The set G(A) is bounded in E1.

It follows immediately from Theorem 3.5.2 in [9] that G(A) is bounded in Eθ

for any θ < 1. If E is a Hilbert space, A is self-adjoint, and α 6 1/2, then the
boundedness of G(A) in E1 is a consequence of a more general assertion obtained
by Chueshov ([5], Lemma 12.1).

Proof of Lemma 4.3. Let Ψ(t, v) = Φtv for t > 0 and v ∈ Eα. The function F is
in C2(Eα, E), and hence ([9], Corollary 3.4.6) Ψ ∈ C2(R+ × Eα, Eα). For given
t > 0 and v ∈ Eα the partial derivative Ψtt(t, v) is a bilinear operator acting
from R × R to Eα according to the rule (τ1, τ2) → τ1τ2∂ttu(t), where u(t) = Φtv,
∂tu = G(Φtv), ∂ttu = (−A + F ′(Φtv))G(Φtv) ≡ f(t, v), and F ′ is the Fréchet
derivative. Since Ψ ∈ C2, it follows that the map f is continuous from R+ × Eα
to Eα. Thus, for fixed t (for example, for t = 1) the function f(t, · ) is contin-
uous from Eα to Eα. But A is a compact set in Eα, and therefore this func-
tion is bounded on A in the metric of Eα and, a fortiori, in the metric of E.
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Further, f(t, v) = (−A+F ′(u))G(u), where u = Φtv. Lemma 3.2 gives us that the
set G(A) is bounded in Eα, while the condition F ∈ C2(Eα, E) implies that the
norms of the linear operators F ′(u) from Eα to E are uniformly bounded with
respect to u ∈ A. Thus, |F ′(u)G(u)| 6 M for u ∈ A and the boundedness of the
norm |f(t, v)| on A implies an estimate |AG(u)| = |G(u)|1 6 K for u ∈ A. The
lemma is proved.

Theorem 4.1 is easy to derive from Lemmas 4.2 and 4.3. Indeed, |G(u)|1 6 K by
Lemma 4.3, and, a fortiori, |G(u)| 6 K1 for u ∈ A. The compact set A is bounded
in Eα, and thus |F (u)| 6 K2 on A by (4). Since A = F − G, this implies that
the attractor A is bounded in E1 and it remains to use Lemma 4.2. The proof of
Theorem 4.1 is complete.

Suppose next that the basic space E is a Hilbert space. We shall determine when
the estimates (12) are true with arbitrary exponent 0 < β < 1 by using the classical
results of Ladyzhenskaya [15] on well-posedness in the class of bounded solutions
of the inverse Cauchy problem for semilinear parabolic equations with self-adjoint
linear part. We recall that in its time the article cited (along with [16]) laid the
foundation for a realization of Hopf’s idea (mentioned above) about the finite-
dimensional character of the limiting regimes of such equations. It was in [15] that
the compact attractor A was proposed as the fundamental object of the theory of
infinite-dimensional evolution systems with dissipation, and a kind of finite dimen-
sionality (different from that discussed here) of the dynamics on A was established
as a general property.

Moreover, the condition (2.8) in [15] enables us to single out a class of equa-
tions (1) with continuous phase flow {Φt} on the attractor that admits (as a direct
consequence of the inequality (2.11) in the same article) the estimate

|Φ−2tu− Φ−2tv| 6M(t, σ)|u− v|σγ (13)

for u, v ∈ A and t > 0, with an arbitrary σ ∈ (0, 1) and with γ = e−2κt, κ = κ(A).
Using the relations

|G(u)−G(v)|α 6K(t)|Φ−tu−Φ−tv|α (Lemma 3.2),

|Φ−tu− Φ−tv|α 6K1(t)|Φ−2tu− Φ−2tv| ([17], Lemma 5.2),

we get from (13) and (3) the estimate (12b) for the vector field G on A for each
β < 1, with C = C(β,A) →∞ as β → 1. An analogous argument works for (12a)
with β < 1.

We now consider the Navier–Stokes system in a rectangle Ω ⊂ R2 with a period-
icity condition on ∂Ω. We assume sufficient (but finite) smoothness of the external
force f(x) with respect to x ∈ Ω. It is known that such a system can be written
in the form (1) with A∗ = A and F ∈ C∞(Eα, E) with α > 1/2 and that it has
a compact attractor A ⊂ Eα if E is taken to be the subspace of divergence-free
vector-valued functions with zero mean in L2(Ω;R2). In this situation it is possible
first to use techniques in [15] to establish the relations (2.8) and (2.11) of that
article and then to derive the estimates (13) and (12) with β < 1. The existence of
an inertial manifold for this problem has not yet been proved. At the same time an
‘almost Lipschitz’ estimate of the vector field on the attractor allows us to expect



428 A. V. Romanov

that some additional requirements (of analyticity type for the external force f) can
ensure the finite dimensionality of the limiting dynamics of the two-dimensional
Navier–Stokes equations on a torus in the sense of Definitions 1.3 and 1.1.

The main results of this paper were reported at the Joint Sessions of the
Petrovskii Seminar and the Moscow Mathematical Society (Moscow, January 1998),
and also at the International Conference on the 90th Birthday of L. S. Pontryagin
(Moscow, August–September 1998). The abstracts were published in [18] and [19].

The author is grateful to J. C. Robinson for very useful information about results
in [8] and [13].
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