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Finite-dimensional dynamics on attractors

of non-linear parabolic equations

A. V. Romanov

Abstract. We show that one-dimensional semilinear second-order parabolic equa-
tions have finite-dimensional dynamics on attractors. In particular, this is true for
reaction-diffusion equations with convection on (0, 1).
We obtain new topological criteria for a class of dissipative equations of parabolic

type in Banach spaces to have finite-dimensional dynamics on invariant compact
sets. The dynamics of these equations on an attractor A is finite-dimensional (can
be described by an ordinary differential equation) if A can be embedded in a finite-
dimensional C1-submanifold of the phase space.

Introduction

This paper, like our earlier paper [1], deals with a new approach to the study of
the limiting behaviour of semilinear parabolic equations,

∂tu = −Au + F (u), u = u(t), (1)

in a Banach space X with an unbounded linear sectorial operator A and “relatively
weak” non-linearity F . We assume that (1) generates a smooth dissipative semiflow
in Xα, where 0 � α < 1 and {Xθ}θ∈R is the scale of Banach spaces determined
by A [2].
We discuss conditions under which the dynamics of (1) on an invariant compact

set K ⊂ Xα can be described by an ordinary differential equation in Rn with a
Lipschitzian vector field, which implies that the phase semiflow on K is Lipschitz-
conjugate to the corresponding phase semiflow on some compact set K1 ⊂ Rn
invariant under the ordinary differential equation. In this case we say that we have
finite-dimensional dynamics on K. If equation (1) has a compact attractor A ⊂ Xα
(that is, an invariant set that attracts the balls B ⊂ Xα uniformly as t → +∞),
then our main attention will be paid to finite-dimensional limiting dynamics of (1),
by which we mean (see [1]) finite-dimensional dynamics of (1) on A.
The conjecture that the final behaviour of non-linear parabolic equations is finite

dimensional was made by E. Hopf [3]. Foias and Prodi [4] and Ladyzhenskaya [5]
were the first to obtain concrete results in this area (stating that “there are finitely
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many determining modes”). The existence of compact attractors A was estab-
lished in [5] for a wide class of problems (1). At that time the finite-dimensionality
of the dynamics on A was treated by Ladyzhenskaya as a means of reconstruct-
ing the full trajectories {u(t)}t∈R ⊂ A from their projections on a suitable finite-
dimensional subspace Y ⊂ Xα. Convenient tools for proving that invariant compact
sets are finite-dimensional (1) were provided by Mallet-Paret’s general theorem [6]
on smooth completely continuous maps in Hilbert space, as well as by its Banach
version [7]. Various methods for estimating the (Hausdorff, fractal or Lyapunov)
dimension of attractors of evolution equations can be found in [8]–[10]. In the recent
paper of Chueshov [11] the problem of finite-parametric tracing of trajectories of
distributed dynamical systems is treated from a unified point of view.
Mane [12] considered equation (1) with a self-adjoint operator A in Hilbert

space and suggested for it (see also [10], [13]) the so-called spectral jump condi-
tion, which enables one to construct an inertial manifold M ⊂ Xα, that is, a
smooth or Lipschitzian finite-dimensional invariant surface that contains an attrac-
tor A and attracts the balls B ⊂ Xα at an exponential rate. Here M is a graph,
and the restriction of equation (1) toM gives an inertial form, that is, an ordinary
differential equation in Rn that models both the exact behaviour of solutions u(t)
on A and the asymptotics of the phase dynamics of (1) in Xα as t → +∞. The
existence of an inertial manifold (“asymptotically finite-dimensional dynamics”) is
a somewhat stronger property than finiteness of dimension of the limiting dynamics.
Unfortunately, the spectral jump condition, which implies considerable sparseness
of the spectrum of A, turned out to be very restrictive, and the theory of inertial
manifolds has, in fact, reached a state of deadlock.
On the other hand, there are reasons to believe that it is sometimes easier to

establish the finite-dimensionality of the dynamics on the attractor of a concrete
dissipative system than to prove that it has an inertial manifold. The first example
(but certainly not the last) supporting this view is provided by the one-dimensional
parabolic equation

ut = uxx + f(x, u, ux), x ∈ (0, 1), (2)

with separated or periodic boundary conditions and a smooth function f such that
the mixed problem has a global solution (for t > 0) satisfying suitable estimates.
The lower semibounded self-adjoint operator A = −∂xx in X = L2(0, 1) determines
a Hilbert scale of spaces {Xθ}. We assume that there is an α ∈ (3/4, 1) such
that equation (2) generates a smooth semiflow in Xα and has a compact attractor
A ⊂ Xα. One of the main results of this paper (Theorem 3.3) states that the
phase dynamics of (2) on A is finite-dimensional. However, it is as yet unknown
whether this semiflow always has an inertial manifold. According to [1], the finite-
dimensionality of the limiting dynamics of [2] implies that the vector field of the
equation is Lipschitzian on A in the Xα-metric, the semiflow can be extended to a
flow on A that is Lipschitzian in the Xα-metric, and the attractor A is a part of
a finite-dimensional Lipschitzian manifold (of graph type)M⊂ Xα. On the other
hand, equation (2) on a circle has solutions u(t, · ) periodic in t, and the periods of
these solutions are bounded below by a positive constant c = c(f), which follows
from the finite-dimensionality of the dynamics on the attractor.
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Systems of equations (2) with u(0) = u(1) = 0 and (d(x)ux)x instead of uxx also
have finite-dimensional limiting dynamics if the smooth non-homogeneous “diffu-
sion coefficient” d(x) > 0, defined on [0, 1], is the same for all components of the
system.
The proof of Theorem 3.3 is based on the results of §§ 1, 2 for an abstract equa-

tion (1), which are of some independent interest. Let A be a discrete sectorial oper-
ator on X, assume that the function F belongs to C2(Xα, X) with some α ∈ [0, 1)
and is bounded on the balls in Xα, and let | · |α be the norm in Xα. Theorem 1.4
establishes two criteria (new in comparison with [1]) for the dynamics of (1) to be
finite-dimensional on the invariant compact sets K ⊂ Xα. The assumption in the
case of the first criterion is the relative compactness of the set w = (u−v)/|u−v|α ,
u, v ∈ K, u �= v in Xα. In the second it is assumed that for any w ∈ K one can
find an Xα-neighbourhood V ⊃ w and a finite-dimensional projector P continuous
in Xα and such that

|u− v|α � c|P (u− v)|α

on V ∩ K, c = c(K, w, P ). If the space X is not reflexive, then we assume that P
is continuous in Xα−1. Theorem 1.5 describes the relation between the finite-
dimensionality of the dynamics on the invariant compact set K ⊂ Xα and the
(identical) embeddability of K in a sufficiently regular finite-dimensional subman-
ifold M ⊂ Xα. Namely, if M is C1-smooth, then the phase dynamics is finite-
dimensional on K. The converse is true if M is a Lipschitzian manifold. Let us
emphasize that the manifoldM is not assumed to be invariant.
Note that some of the above statements hold under the additional assumption

that the finite-dimensional invariant subspaces of A, ordered in suitable way, have
the basis property in Xα.
All these constructions are of a topological nature, but in the Hilbert case Theo-

rems 2.3 and 2.8 provide analytical conditions on the vector field G(u) = F (u)−Au
of equation (1) under which its limiting dynamics is finite-dimensional. These con-
ditions involve the decomposition

G(u)−G(v) =
(
B0(u, v) −B(u, v)

)
(u− v)

on the attractor A ⊂ Xα, where B0(u, v) is the field of continuous linear maps
Xα → Xα and B(u, v) is a field of unbounded sectorial linear operators on X
similar to normal ones. We also assume that the set Σ =

⋃
u,v∈A σ(B(u, v)) is

sufficiently sparse, but this condition is less restrictive than the condition on σ(A)
in the spectral jump condition if α �= 0. Under some technical assumptions on B0
and B we establish that the second criterion in Theorem 1.4 is applicable, which
implies that the dynamics on A is finite-dimensional.
This scenario can be successfully realized for one-dimensional semilinear par-

abolic equations (2), but the corresponding passage to dimensions � 2 remains
problematical even in the “simple” situation when f = f(x, u). We have not suc-
ceeded as yet in establishing the finite-dimensionality of the limiting dynamics for
the two-dimensional Navier–Stokes system, although the arguments in [1], § 4, lead
us to hope that this might be proved in the case of periodic boundary conditions.
Further efforts are required to weaken the assumptions of Theorems 2.3 and 2.8
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in order to enlarge the list of equations of parabolic type with finite-dimensional
dynamics on the attractors.
The natural question of whether equations (1) can have solutions whose limiting

dynamics is not finite-dimensional seems to be rather difficult. Until recently we
have not been able to answer the corresponding question concerning the asymptotic
finite-dimensionality of the phase dynamics. It was only in [14] that we succeeded
in producing an example of equation (1) with no inertial C1-manifoldM ⊂ Xα.
We have not succeeded as yet in constructing a counterexample of this kind in the
case when the class of smoothness ofM is replaced by Lip.
It is important to cite very interesting papers by Kamaev [15], [16], in which an

invariant C1-continuous family of smooth stable manifolds of finite codimension is
constructed for the attractors of equations similar to (2) and the corresponding sys-
tems of equations. It would be interesting to elicit (in the general case) the relation
between the existence of such a family of manifolds and the finite-dimensionality
of the limiting dynamics of the evolution problems (1).
We do not produce here any quantitative estimates for the phase dimension of

the ordinary differential equation describing the limiting dynamics of (1), nor do
we compare them with the well-known estimates for the dimensions of attractors
and inertial manifolds (if the latter exist). This promising topic exceeds the limits
of this paper and may serve an object of further investigation.

§ 1. Topological conditions
Let us specify some concepts concerning (1) and recall some well-known proper-

ties of these equations (see, in particular, [2]).
Let X be a separable infinite-dimensional Banach space with norm | · |. Let σ( · ),

‖ · ‖ and R(λ; · ) be the spectrum, norm, and resolvent of linear operators on X.
The closed linear operator A in (1) with a dense domain D(A) ⊂ X is assumed
to be sectorial and discrete. The former assumption means that there are k > 0
and λ0 ∈ R such that σ(A) is contained in the sector | Imλ| < kRe(λ− λ0) of the
complex plane C and

‖R(λ;A)‖ �M/(1 + |λ− λ0|), M =M(A, k, λ0)

outside this sector. The latter assumption (of discreteness) means that R(λ;A) is
compact. In what follows we assume that λ0 = 0 or, equivalently, Reσ(A) > 0 (that
is, Reλ > 0 on σ(A)). Hence, the powers Aθ and the Banach spaces Xθ = D(Aθ)
with the norm |u|θ = |Aθu| are well defined for all θ ∈ R. For θ < 0 the operators Aθ
are completely continuous in X and D(Aθ) is the completion of X in the norm
| · |θ. We have X0 = X and X1 = D(A). For β < θ the embeddings Xθ ⊂ Xβ are
absolutely continuous. For β, θ ∈ R the operators Aβ map Xθ+β isometrically onto
Xθ.
We denote by BCν(Y1, Y2), ν ∈ Z+ (BC(Y1, Y2)) the class of Cν-smooth (con-

tinuous) maps Π: Y1 → Y2 bounded on balls, where Y1 and Y2 are Banach spaces.
If α ∈ [0, 1) and F ∈ BC2(Xα, X), then the Cauchy problem for (1) with

u(0) = u0 ∈ Xα has a strong local solution u(t) ∈ C2((0, t∗), Xα) ∩ C
(
[0, t∗), Xα

)
for t∗ = t∗(u0) > 0. In fact, u(t) ∈ X1 on (0, t∗). We also assume that equation (1)
is dissipative in Xα, that is, it has global solutions u(t) = Φtu0 for t > 0 and
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there is an (absorbing) ball B0 ⊂ Xα such that ΦtB ⊂ B0 for every ball B ⊂ Xα
if t > t0(B). Then the phase semiflow {Φt}t�0 is a map (0,∞) × Xα → Xα of
class C2. If U ⊂ Xα, then ΦtU is bounded in Xθ for t > 0, α < θ < 1 (which
implies that ΦtU is relatively compact in Xα). This can be deduced from the fact
that the current tube

⋃
0�τ�t ΦτU is Xα-bounded by means of the arguments used

in [2], Theorem 3.3.6. Hence, the evolution operator Φt is compact on every ball
B ⊂ Xα if t > t0(B).
So we assume that the following three hypotheses hold:
(H1) the linear operator A is discrete and sectorial, the spectrum σ(A) is count-

able and Reσ(A) > 0,
(H2) F ∈ BC2(Xα, X) for some α ∈ [0, 1),
(H3) equation (1) is dissipative in Xα.
The assumption that σ(A) is countable is purely technical. In Hilbert space, (H1)

holds for any discrete normal operator whose spectrum is contained in the sector
| Imλ| < kReλ with k = const > 0 (for example, for any discrete positive-definite
operator).
We denote by G(u) the vector field F (u)−Au of equation (1). The set U ⊂ Xα is

invariant if ΦtU = U for t > 0 (in fact, we have U ⊂ X1). Bounded invariant subsets
of Xα are relatively compact. If (H1)–(H3) hold, then the phase semiflow {Φt}
has (see [8]–[10]) a compact attractor A, which is the maximal bounded invariant
subset of Xα. It was shown in [1], § 4, that the function G : A → Xα is Hölderian
in the Xα-metric and |u|1 � const on A. The last assertions remain valid if F ∈
BC1(Xα, X), which can be proved by writing (1) in integral form. Theorem 1.4
in [1] implies that the following lemma holds.

Lemma 1.1. The function A : A → X is Hölderian in the Xα-metric.

Remark 1.2. Hypothesis (H1) holds for A : X1 → X and A : X1+β → Xβ with
β > 0. Replacing (Xα, X) in (H2), (H3) by (Xα+β , Xβ), we can transfer the above
properties of the dynamics of (1) to the phase space Xα+β . The same is true for
the subsequent constructions.

The existence of an absorbing ball for the semiflow {Φt} is needed only to guar-
antee the existence of a compact attractor.

Remark 1.3. If we restrict ourselves to the study of the dynamics of (1) on arbitrary
invariant compact sets K ⊂ Xα, then (H3) can be replaced by the hypothesis that
the solutions u(t) can be extended to (0,∞) for all initial values u0 ∈ Xα.
Both of these remarks are also applicable to the results of [1].
For a > 0 we denote by Pa the finite-dimensional spectral projector of the

operator A on X corresponding to the part of spectrum with Reλ < a. The
projectors Pa commute with Aα and are continuous in X and Xα.
We say (see [1], Definition 1.1) that the phase dynamics of (1) on the invariant

compact set K ⊂ Xα is finite-dimensional if there are ordinary differential equations
with a Lipschitzian vector field and a resolving flow {ϕt} in Rn, and a Lipschitzian
embedding Ψ: K → Rn such that

ΨΦtu = ϕtΨu, u ∈ K, t � 0.
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If K = A, then the assertion that equation (1) has finite-dimensional limiting
dynamics has the same meaning.
By Theorem 1.6 in [1], the following assertions are equivalent:
(FD) the phase dynamics on K is finite-dimensional,
(VF) |G(u)−G(v)|α � c|u− v|α for u, v ∈ K, c = c(K),
(Fl) the semiflow {Φt} on K is injective and can be extended to a flow that is

Lipschitzian in the Xα-metric,
(GrF) there is an a > 0 such that the estimate |u − v|α � c|Pa(u − v)|α holds

for u, v ∈ K, c = c(K, a),
(Gr) there is a finite-dimensional projector P continuous in Xα (and in Xα−1

ifX is non-reflexive) and such that |u−v|α � c|P (u−v)|α for u, v ∈ K, c = c(K, P ),
(EM) the metrics of Xα and Xα−1 are equivalent on K.
The theorem cited establishes the logical cycle (VF)→(Fl)→(GrF)→(Gr)→

(EM)→(VF) and the implications (FD)→(Fl) and (Gr)→(FD). The implication
(Fl)→(GrF) holds under an additional condition [1], Proposition 1.4, on the oper-
ator A stated in terms of properties of the semigroup {exp(−tA)}t�0.
Let us state two more criteria for the finite-dimensionality of the dynamics on

invariant compact sets.

Theorem 1.4. Let
lim
a→∞

|u− Pau|α = 0 (3)

for all u ∈ Xα, and let K be an invariant compact set of equation (1) in Xα.
Then the dynamics on K is finite-dimensional if and only if one of the following
equivalent assertions holds:
(KC) the set K0 of points w = (u−v)/|u−v|α with u, v ∈ K, u �= v, is relatively

compact in Xα,
(GrL) for any w ∈ K one can find Xα-neighbourhoods V ⊃ w and a finite-

dimensional projector P in Xα (and in Xα−1 if X is non-reflexive) such that
|u− v|α � c|P (u− v)|α on V ∩ K, c = c(K, w, P ).
Let us emphasize that the rank of P in (GrL) may depend on w.

Proof. Let us establish the logical chain (FD)→ (KC)→ (GrL)→ (FD). We know
that (FD)→(Fl), (GrF)→ (Gr)→ (FD) and (EM)→(Fl). It is obvious that
(Gr)→(GrL). Hence, it is sufficient to prove the implications (Fl)→(KC)→(GrF)
and (GrL)→(EM).
(Fl)→(KC). Let α < θ < 1. For t > 0 we have the estimate (see [17], Lemma 5.2)

|Φtu − Φtv|θ � ct|u − v|α on K with ct = c(K, θ; t). Using property (Fl) of the
semiflow {Φt}, we obtain that

|u− v|θ � c1|Φ−1u− Φ−1v|α � N |u− v|α, N = const .

Therefore,
∣∣(u−v)/|u−v|α∣∣θ � N on K and the set K0 is bounded in Xθ. Hence,

this set is relatively compact in Xα.
(KC)→(GrF). Formula (3) implies that ‖I − Pa‖α � const.1 It follows from

Ascoli’s theorem that Pa → I (as a→∞) uniformly on the relatively compact set

1Here and below I = id.
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K0 ⊂ Xα and |h− Pah|α � εa|h|α, where εa → 0 and h = u− v for u, v ∈ K. If
εa < 1 and c = (1−εa)−1, then |h−Pah|α � cεa|Pah|α and |u−v|α � c|Pa(u−v)|α
on K.
(GrL)→(EM). Let δ > 0 be the Lebesgue number [18], 2.13.4, of the open cov-

ering of the compact set K by the sets U(w) = V ∩K (we assume that this covering
is finite). Then any two points u, v ∈ K with |u−v|α < δ belong to the same U(w).
The arguments used in the proof of the implication (Gr)→(EM) in [1], Theorem 1.6,
yield the estimate |u−v|α � c|u−v|α−1 on the Xα-closure of each of the sets U(w)
with the same constant c > 0. A similar relation holds for u, v ∈ K such that
|u − v|α � δ. (Otherwise we would have an absurd situation: one could find
sequences {ul}, {vl} ⊂ K converging in the Xα-metric and such that |ul− vl|α � δ,
but |ul − vl|α−1 → 0 as l → ∞.) Finally, the inequality |u − v|α � c′|u − v|α−1
holds on K since the embedding Xα ⊂ Xα−1 is continuous, which completes the
proof of Theorem 1.4.

Now we have the extended logical cycle (VF)→(Fl)→(KC)→(GrF)→(Gr)→
(GrL)→(EM)→(VF) along with the implications (FD)→(Fl) and (Gr)→(FD)
(assumption (3) was used only in the proof of the implication (KC)→(GrF)). In
fact, assumption (3) means that the finite-dimensional invariant subspaces of the
operator A corresponding to the spectral sets {λ ∈ σ(A): Reλ = const} arranged
in increasing order of Reλ have the basis property (in Xα). This assumption holds
if A is a spectral operator on X (see [19]) (in which case it is a spectral operator
onXα as well). If X is a Hilbert space, then this assumption holds if the operator A
is similar to a normal operator.
We shall now discuss a condition under which the phase dynamics on the

invariant compact set K ⊂ Xα is finite-dimensional. This condition is of special
interest. Theorem 1.5 in [1] establishes a relation between the embeddability of K
in a (sufficiently regular) finite-dimensional submanifoldM ⊂ Xα and the finite-
dimensionality of the dynamics onK. Our next theorem is a version of that theorem.
This version is definitive as far as the order of smoothness ofM is concerned.

Theorem 1.5. Let K be an invariant compact set of equation (1) in Xα and
assume that (3) holds for the operator A. If K ⊂ M, where M is
a finite-dimensional C1-submanifold in Xα, then the phase dynamics on K is finite-
dimensional. Conversely, if the dynamics on K is finite-dimensional, then there is
an a > 0 such that the set K belongs to the graph of a uniformly Lipschitzian map
from PaXα to (I −Pa)Xα.

This theorem was announced in [20]. It differs from the cited result of [1] in that
the order of class of smoothness ofM in its hypotheses is lowered from C2 to C1

and in certain details of the assumptions on the linear operator A. We see that the
limiting dynamics of (1) is finite-dimensional if the attractor A can be embedded
in a finite-dimensional C1-manifoldM⊂ Xα.

Proof. The second (converse) part of the theorem can be proved in the same way
as in [1]. One need only take into account that the implication (FD)→(GrF) holds
under assumption (3) on A.
Further, we start from the inclusion K ⊂ M. The finite-dimensional C1-

manifoldM in the Banach space Xα is arranged locally as the graph of a smooth



984 A. V. Romanov

function over the tangent subspace. Therefore, for any w ∈ M one can find a
projector P of rank n = dimM and continuous in Xα, a constant c = c(M, w, P ),
and a closed ball V = {u ∈ Xα: |u − w|α � ε} with ε = ε(w) such that
|u− v|α � c|P (u− v)|α onM(w) = V ∩M. It is obvious thatM(w) is a compact
C1-manifold of dimension n. Using Lemma 2.3 in [1], we choose a projector P0 of
rank n continuous in Xα and Xα−1 in such a way that

|(P − P0)(u − v)|α � (2c)−1|u− v|α, u, v ∈M(w).
We easily deduce the estimate |u− v|α � 2c|P0(u − v)|α onM(w). Hence, (GrL)
holds for the invariant compact set K. Theorem 1.4 implies that the phase dynamics
on K is finite-dimensional, which completes the proof.
Remark 1.6. If the limiting dynamics of equation (1) is finite-dimensional, then the
periods of its periodic solutions are bounded below by a positive number. This
follows from the definition of finite-dimensional dynamics on the attractor and the
well-known lower estimate [21] for the periods of periodic solutions of ordinary
differential equations in Rn in terms of the Lipschitz constant of the corresponding
vector field.

§ 2. An analytical approach
Our main purpose in this section is to find constructive conditions on the coef-

ficients of equation (1) in the Hilbert space X under which (GrL) holds for the
attractor A ⊂ Xα, which implies that the dynamics on A is finite-dimensional.
The conditions obtained in this section will enable us to prove (in § 3) that the lim-
iting dynamics of parabolic equations (2) is finite-dimensional. Several auxiliary
statements can be found in § 4.
Unless otherwise stated, X is assumed to be a Banach space. We use the following

notation: N = A × A, D is Fréchet differentiation, L(Xθ, Xβ) is the space of
continuous linear operators acting from Xθ to Xβ , L(Xθ) = L(Xθ , Xθ), ‖ · ‖ and
‖ · ‖α are the norms in L(X) and L(Xα), and ‖ · ‖α,0 and ‖ · ‖0,α are the norms
in L(Xα, X) and L(X,Xα). We shall study the (operator) vector fields Π(u, v)
on N with values in various Banach spaces Y . We equip N with the metric induced
from Xα ×Xα.
Definition 2.1. A continuous field Π: N → Y is said to be regular if for any
u, v ∈ A the function Π(Φtu,Φtv) : [0,∞) → Y belongs to the class C1 and its
derivative ∂tΠ(u, v) at zero is bounded uniformly with respect to u and v.

Since the semiflow {Φt} is smooth and the compact set A ⊂ Xα is invariant,
the identical embedding N → Xα × Xα is regular. Hence, any field Π: N → Y
extendable to a C1-map defined on an (Xα ×Xα)-neighbourhood of N is regular.
We have

∂tΠ(u, v) = DΠ(u, v)(∂tu, ∂tv), ∂tu = G(u) = F (u)− Au.
We proceed according to the plan described in the Introduction. For u, v ∈ A

we put

T (u, v) = T0(u, v) +

∫ 1
0

DF (τu+ (1− τ)v) dτ, (4a)

B(u, v) = ωI + A− T (u, v), (4b)
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where T0 is an arbitrary operator field bounded as a map with values in L(Xα)
and regular as a map with values in L(Xα, X), and ω > 0 is a numerical param-
eter. Here T = T0 + T1, T1(u, u) = DF (u). Since F ∈ C2(Xα, X), we have
T1(u, v) ∈ L(Xα, X). The field T1 can be extended fromN to a C1-mapXα×Xα →
L(Xα, X), which implies that the field T : N → L(Xα, X) is regular. The oper-
ators T0(u, v) in (4a) play the role of an artificial correction that “improves” the
properties of the field B(u, v). Note that

D(B(u, v)) ≡ D(A) = X1, B(u, v) ∈ L(X1, X).

The integral mean-value theorem implies that

G(u)−G(v) =
(
B0(u, v)− B(u, v)

)
(u − v), B0(u, v) = ωI − T0(u, v).

Let

Σ =
⋃
u,v∈A

σ(B(u, v)), R = C \ Σ,

Γa = {λ ∈ C : Reλ = a}, Γ(a, ξ) = {λ ∈ C : a− ξ � Reλ � a + ξ}

with a > ξ > 0. We choose ω in (4b) in such a way that (see Lemma 4.1 below)
ReΣ > 0 for Σ = Σ(ω). If Γa ⊂ R, then we denote by Pa(u, v) the spectral projector
of the operator B(u, v) (continuous inX) corresponding to the part of the spectrum
with Reλ < a and put Qa(u, v) = I − Pa(u, v). According to [2], §§ 1.4, 1.5, the
operators B(u, v) are discrete and sectorial inX, D(Bα) = Xα, and the powers Bα
and B−α commute with Pa, Qa and R(λ;B). The projectors Pa(u, v) have finite
rank n = n(a) for all u, v ∈ A. Moreover, Pa, Qa ∈ L(Xα), and Lemmas 4.2 and 4.3
below imply that the operator fields Pa, Qa : N → L(Xα), Bα : N → L(Xα, X)
and B−α : N → L(X,Xα) are regular. Since Pa is regular, we have the estimate

‖∂tPa(u, v)‖α � m(a) (5)

on N with m(a) <∞.

Definition 2.2. When X is a Hilbert space we say that B : N → L(X1, X) is a
field of uniformly scalar type if B(u, v) = S−1(u, v)H(u, v)S(u, v) on N , where the
linear operators H(u, v) are normal in X, the field S : N → L(X) is regular, and
the field S−1 : N → L(X) is bounded.
In this definition theB(u, v) are operators of scalar type (see [19]) for all u, v ∈ A.

In the case when T0 = 0 and u = v the representation B = S
−1HS in Definition 2.2

was actually used by Kamaev [15], [16] in his study of phase dynamics near the
attractors of (scalar or vector) equations of a somewhat wider class than (2). In
these papers either the conventional Liouville transformation or [16] a modification
of it was applied to the right-hand side of the linearized equation.
The following inequalities should be mentioned in the context of Definition 2.2:

‖S(u, v)‖ � γ, ‖S−1(u, v)‖ � γ, ‖∂tS(u, v)‖ � γ1 (6)
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on N , where γ, γ1 = const. It is clear that σ(B) = σ(H). P ′a = SPaS−1 and
Q′a = SQaS

−1 are orthogonal spectral projectors of the normal operators H. Let us
emphasize that the domain of D(H) = SD(B) = SX1 depends, generally speaking,
on u and v.
If X is a Hilbert space with scalar product ( · , · ) and there is an a > ω such that

the straight line Γa is contained in R, then we put

p = S(u, v)Bα(u, v)Pa(u, v)h, q = S(u, v)Bα(u, v)Qa(u, v)h,

Wa(u, v) =
1

2

(
|q|2 − |p|2

)

for u, v ∈ A, h = u − v. The vector fields p(u, v) and q(u, v) are regular maps
to X (as combinations of regular fields). Therefore, the numerical field Wa(u, v)
is regular. The following assumption on the dynamics of equation (1) will play an
important role:

∂tWa(u, v) + 2(a− ω)Wa(u, v) � 0 (7)

for u, v ∈ A. Since Q′aS = SQa, QaBα = BαQa and Q2a = Qa, we have

Q′aq = Q
′
aSB

αQah = SB
αQah = q.

We prove likewise that P ′ap = p. Since P
′
a and Q

′
a are orthogonal projectors, we

have (p, q) = 0. Relation (7) is a non-linear analogue of a similar assumption
in [13], Theorem 5, which enables us to construct an inertial manifold for equa-
tion (1) with a self-adjoint linear part. If |q| � |p| (or |q| � |p|), then inequality (7)
provides a non-linear generalization of the “squeezing property” and of the “cone
condition” [10], Ch. 8, which are well known in the theory of evolutionary systems.
Let L and N be the constants (depending only on A, F and T0) in Lemmas 4.1

and 4.3 below, and assume that ‖T0(u, v)‖α �K on N .

Theorem 2.3. Let X be a Hilbert space, assume that (3) holds for the operator A,
and let ReΣ > 0 for Σ = Σ(ω). Assume that
(a) B : N → L(X1, X) is an operator field of uniformly scalar type,
(b) R contains a strip Γ(a, ξ) with a > ω and ξ � γγ1+γ2N +γ2L2(K+m(a)).
Then (7) holds and the limiting dynamics of equation (1) is finite-dimensional.

Note that in the estimate for ξ only m depends on a. The next lemma plays the
key role in the proof of the theorem.

Lemma 2.4. The assumptions of Theorem 2.3 imply that inequality (7) holds.

Proof. We do not indicate in our notation that vector fields on N depend on u, v ∈
A and, as a rule, on a. For example, Pa(u, v) = P and Qa(u, v) = Q. For regular
operator fields on N we put for brevity ∂tS(u, v) = St and so on. If h = u−v, then
∂th = ∂tu − ∂tv = ωh − T0h − Bh. Here h ∈ X1. Since ∂th = G(u) −G(v) ∈ Xα
and T0h ∈ Xα, we have Bh ∈ Xα. Since Xα = D(Bα), we have2 h ∈ D(B1+α) and
Bαh ∈ X1.
2h ∈ D(B2) if T0 ∈ L(X1), in particular, if T0 = 0.
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We start from the expression ∂tWa = (∂tq, q)− (∂tp, p) with q = SBαQh, p =
SBαPh and p+ q = SBαh. First we transform (∂tq, q). We put V = SB

αQ and
U = B−αS−1. Then q = V h, h = U(p + q) and ∂tq = Vth + V ∂th or, in more
detail,

∂tq = (VtU + ωV U − V T0U − V BU)(p + q).
We shall use the equalities QBα = BαQ, QB−α = B−αQ, B = S−1HS and
Q = S−1Q′S, as well as Q′p = 0 and Q′q = q. We see that SBαh ∈ SX1 =
D(H), whence q = SBαQh = Q′SBαh ∈ D(H) and p = SBαh − q ∈ D(H). We
easily find that V U(p + q) = q, V BU(p + q) = Hq and V T0U = Q

′U1 with
U1 = SB

αT0B
−αS−1. Further, we have Qt + Pt = 0 and

Vt = StB
αQ+ S(Bα)tQ− SBαPt = J1 + J2 − J3.

Elementary calculations yield the formulae J1U = V1Q
′, where V1 = StS

−1,
J2U = V2Q

′ with V2 = S(B
α)tB

−αS−1 and J3U = V3 with V3 = SB
αPtB

−αS−1.
Therefore, (J1U)(p + q) = V1q, (J2U)(p+ q) = V2q and

(∂tq, q) = ((V1 + V2)q, q)− (V3(p + q), q)− (U1(p+ q), q) + ((ωI −H)q, q),
using the fact that (Q′)∗ = Q′ in X, whence (Q′U1(p+ q), q) = (U1(p+ q), q).
We obtain likewise that

(∂tp, p) = ((V1 + V2)p, p) + (V3(p + q), p)− (U1(p+ q), p) + ((ωI −H)p, p).
Inequalities (6) and (22) (see the Appendix) imply that ‖V1‖ � γγ1 and ‖V2‖ �

γ2N . Moreover, ‖V3‖ � γ2‖BαPtB−α‖. The obvious identities

‖BαPtB−α‖ = ‖A−αBαPtB−αAα‖α, ‖A−αBα‖α = ‖BαA−α‖,
‖B−αAα‖α = ‖AαB−α‖,

combined with (5), (6) and (18) imply that ‖V3‖ � κ = γ2L2m(a). As mentioned
above, (p, q) = 0, whence∣∣(V3(p+ q), p+ q)∣∣ � κ(|p|2+ |q|2).
The same technique yields the estimate ‖U1‖ � κ0 = γ2L2K, whence∣∣(U1(p+ q), p)− (U1(p + q), q)∣∣ � κ0|p+ q| · |p− q| = κ0(|p|2+ |q|2).
Finally, (Hq, q) � (a + ξ)|q|2 and (Hp, p) � (a − ξ)|p|2, since the operator H is
normal, q ∈ Q′X and p ∈ P ′X. Putting κ1 = γγ1 + γ2N and κ2 = κ + κ0, we
obtain that

∂tWa + 2(a− ω)Wa = (∂tq, q)− (∂tp, p) + (a− ω)
(
|q|2 − |p|2

)
� κ1|q|2 + κ2

(
|p|2+ |q|2

)
− ξ|q|2 + κ1|p|2 − ξ|p|2

= (κ1 + κ2 − ξ)
(
|p|2 + |q|2

)
� 0,

since ξ � κ1 + κ2 by the assumption of the lemma, which completes the proof.
Sometimes it is possible to simplify the restriction on ξ in Theorem 2.3.

Remark 2.5. If α = 0, T0 = 0, and the operators B(u, v) are normal, then ξ �m(a)
in assumption (b) of Theorem 2.3.

Here the constants γ1, K and N are equal to zero, and γ and L are equal to 1.
A similar situation arises for the reaction-diffusion equation ut = ∆u + f(x, u) in
finite domains in Rl, l � 1.
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Lemma 2.6. Let X be a reflexive space, let K be an invariant compact set of
equation (1) in Xα, and assume that (3) holds for the operator A. If for some
a > 0 we have Γa ⊂ R and

|Qa(u, v)(u− v)|α � c|Pa(u, v)(u− v)|α (8)

for u, v ∈ K and c = c(K, a), then the phase dynamics on K is finite-dimensional.
Proof. Put Pa(w) = Pa(w,w) for w ∈ K ⊂ A. By Lemma 4.2, the projector field
Pa : N → L(Xα) is continuous in the (Xα × Xα)-metric. For every w ∈ K we
consider an Xα-neighbourhood V ⊃ w such that

‖Pa(w) − Pa(u, v)‖α � (2 + 2c)−1

on V ∩ K. Since h = u− v, we have

|h|α � |Pa(u, v)h|α + |Qa(u, v)h|α

� (1 + c)|Pa(u, v)h|α �
1

2
|h|α + (1 + c)|Pa(w)h|α,

whence |u − v|α � (2 + 2c)|Pa(w)(u − v)|α for u, v ∈ V ∩ K. Hence, (GrL) holds
for K. By Theorem 1.4, the dynamics on K is finite-dimensional, which completes
the proof of the lemma.

So, we have obtained another (sufficient) condition for the dynamics of (1) to be
finite-dimensional on invariant compact sets.
We are now ready to complete the proof of Theorem 2.3. Let us recall that in

many cases we do not indicate in our notation the dependence on u, v ∈ A and
a > ω. Since the attractor A is an invariant set, every solution u(t) of equation (1)
with u(0) = u0 ∈ A can be extended (as a function of t) to R, and u(t) ∈ A. We do
not affirm yet that this extension is unique for t < 0. The identities BαQ = QBα,
SQ = Q′S and the boundedness of A in Xα imply that

2Wa(u, v) � |q|2 = |SBαQh|2 = |Q′SBαh|2 � γ2L2|h|2α � const

for u, v ∈ A and h = u − v. Here we have used the fact that Q′ is an orthogonal
projector in X. We have also used inequalities (6) and (18). Now if u0, v0 ∈ A,
ζ(t) = Wa(u(t), v(t)) and λ = 2(a − ω) > 0, then (7) implies that ζ(0) � eλtζ(t),
t < 0. Since ζ(t) � const, we have ζ(0) � 0, that is, Wa(u, v) � 0 on N , or |q| � |p|
with q = SBαQh, p = SBαPh. Taking into account (6) and (18), we obtain that

|p| � γ|BαPh| � γL|Ph|α.

On the other hand,

|Qh|α = |AαQh| = |AαB−αS−1q| � γL|q|.

Hence, estimate (8) holds with c = γ2L2. By Lemma 2.6, the phase dynamics on A
is finite-dimensional, which completes the proof of Theorem 2.3.
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Remark 2.7. In the Hilbert case the relation (7) implies the estimate (8) and the
inequality Wa(u, v) � 0 on N .
Let us see how assumption (b) of Theorem 2.3 is related to the geometry of the

total (with respect to u, v ∈ A) spectrum Σ of the operators B(u, v). We shall
discuss the situation when R = C \ Σ contains vertical strips Γ(a, ξ) with a and ξ
as large as desired. We assume that a suitable choice of the number ω > 0 in (4b)
and the parameters k > 0 and 0 � θ � 1 enables one to localize Σ in the domain

Ω(k, θ) =
{
x+ iy ∈ C : x > 0, |y| < kxθ

}
.

By Lemma 4.1, this is always possible if θ = 1. For θ < 1 such a localization of Σ
is typical for semilinear parabolic partial differential equations in finite domains
in Rl.
Assumption (a) in Theorem 2.3 implies that

‖R(λ;B)‖ � γ2/r(λ), B = B(u, v),

where r(λ) is the distance3 from λ ∈ R to Σ and γ is the constant that occurs in (6).
Indeed, R(λ;B) = S−1R(λ;H)S and ‖R(λ;H)‖ � 1/r(λ), since the operators
H = H(u, v) are normal. For u, v ∈ A and Γa ⊂ R, Lemma 4.2 provides the
representation

∂tPa(u, v) =
1

2πi

∫ a+i∞
a−i∞

E(λ; u, v) dλ (9)

with kernel E(λ; u, v) ∈ L(Xα) holomorphic in λ ∈ R and such that

‖E(λ; u, v)‖α �
M

r2(λ)

(
|λ|α + rα(λ)

)
(10)

with M =M(A, F, T0).
Using the inclusions Σ ⊂ Ω(k, θ) and R ⊃ Γ(a, ξ) for some a > ξ > ω, we

estimate m(a) in (5) in terms of a, ξ and θ. Let χ(y) be a positive minorant of the
function r(a + iy) on R such that χ(y) � |a+ iy|. Then for λ = a + iy the right-
hand side of (10) is majorized by the expression 2M |a+ iy|α/χ2(y). If, moreover,
χ(y) = χ(−y), then

m(a) � 2M
π

∫ ∞
0

|a+ iy|α
χ2(y)

dy. (11)

We denote by c, c1, . . . positive constants depending only on k, θ andM . Increas-
ing, if necessary, the numbers ω and k, we obtain that Σ ⊂ Ω(k, θ) ∩ Ω(k, 1). We
assume that a and ξ are as large as is needed in our arguments below.
We begin our analysis of the right-hand side of (11) with the case θ = 0. We

put χ(y) = ξ on [0, k], χ(y) = (ξ2 + (y − k)2)1/2 on (k,∞) and χ(y) = χ(−y) for
y < 0. It is clear that χ(y) � r(a + iy) and χ(y) � |a + iy| for all y ∈ R. Using
the estimates |a+ iy|α � aα + kα for 0 � y � k, |a+ iy|α � aα + kα + (y − k)α for
y > k and integrating, we obtain the inequality

m(a) � caα/ξ.
3It is easy to show that Σ is closed, whence r(λ)> 0.
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Further, let θ = 1. We put χ(y) = ξ on [0, 2ka], χ(y) = (y − ka)/(1 + k2)1/2
on (2ka,∞) and χ(y) = χ(−y) for y < 0. If y > 2ka, then χ(y) is the distance
from a+ iy to the boundary of the sector Ω(k, 1). Therefore, χ(y) � r(a+ iy) and
χ(y) � |a+ iy| on R. Writing

|a+ iy|α � aα(1 + (2k)α)

if 0 � y � 2ka and
|a+ iy|α � aα + (ka)α + (y − ka)α

if y > 2ka and integrating in (11), we obtain the estimate

m(a) � caα+1/ξ2.

In the case when 0 < θ < 1 we put ν = θ−1 > 1 and κ = k−ν . For x0 > a and
y0 = kx

θ
0 the normal to the parabola y = kx

θ at (x0, y0) intersects the straight line
x = a at the point with ordinate

y1 = z(x0) = y0 + νκ
2y2ν−10 − νκayν−10 ,

or, which is the same, z(x0) = kx
θ
0+ νk

−1(x0− a)x1−θ0 . Therefore, z′(x0) > 0 and
y0 < y1. We assume without loss of generality that y0 > 1. If z(a + ξ) � 2ka,
then we determine x0 (and y0) from the condition z(x0) = y1, y1 = 2ka. Then
a(2k + cyν−10 ) � c1y2ν−10 and a � c2yν0 . If z(a + ξ) > 2ka, then we put y0 =
k(a + ξ)θ and y1 = z(a + ξ). In any case, we have 1 < y0 < y1, y0 � c3aθ and
y1 � 2ka. Simple geometrical arguments taking into account that y = kxθ is a
concave function show that the distance from any point λ = a + iy, y0 � y � y1,
to the branch of the parabola with x � a + ξ exceeds ρ(y) = (ξ2 + (y − y0)2)1/2.
Hence, this is true for 0 � x < a− ξ.
We put χ(y) = ξ on [0, y0], χ(y) = ρ(y) on (y0, y1], χ(y) = (y − ka)/(1 + k2)1/2

if y > y1 and χ(y) = χ(−y) if y < 0. We see that χ(y) � r(a + iy) if y0 < y � y1.
This estimate is obvious on [0, y0]. For y > y1 it has already been established.

On the other hand, χ(y) � |a + iy| on R. We also have |a + iy|α � aα + yα0
for 0 � y � y0, |a + iy|α � aα + yα0 + (y − y0)α for y0 < y � y1 and |a + iy|α �
aα+(ka)α+(y−ka)α for y > y1. Estimating the right-hand side of (11), we obtain
the inequality

m(a) � c4aα/ξ + c5aα+θ/ξ2.

In all three cases we have used the freedom of choice of parameters a and ξ
mentioned above.

Hence, the assumption on ξ in Theorem 2.3 for sufficiently large a > 0 can be
stated as follows: ξ � caα/2 if 0 � θ � α/2 and ξ � ca(α+θ)/3 if α/2 < θ � 1,
where c = c(A, F, T0). The threshold value θ = α/2 arises from the equality
(α+ θ)/3 = α/2.

Thus we obtain an important consequence of Theorem 2.3.
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Theorem 2.8. Let X be a Hilbert space, assume that (3) holds for the operator A,
and let assumption (a) of Theorem 2.3 hold. Assume, moreover, that the set R
contains strips Γ(an, ξn) with an, ξn → ∞ as n → ∞ and Σ ⊂ Ω(k, θ) ∩ Ω(k, 1)
for some k > 0 and θ ∈ [0, 1]. Put β = α/2 if 0 � θ � α/2 and β = (α + θ)/3 if
α/2 < θ � 1.
If aβn = o(ξn) as n → ∞, then the dynamics of equation (1) on the attractor is

finite-dimensional and relation (7) holds with a suitable a > 0.

Note that β � (α+ 1)/3 < 2/3. Besides, θ = 0 if Σ ⊂ R.
If A is a positive self-adjoint operator on X, then it is easy to establish the

inclusion Σ ⊂ Ω(k, α) with a suitable k > 0 (by varying the parameter ω). There-
fore, in Theorem 2.8, a

2α/3
n = o(ξn) as n → ∞. The well-known spectral jump

condition (see [12], [10], [13]), under which equation (1) has an inertial manifold is
more restrictive (for α > 0), since it can be stated in comparable terms as follows:
aαn = o(ξn) as n→∞. So the limiting dynamics in the class of evolution systems (1)
can be finite-dimensional even if there is no inertial manifold.

Remark 2.9. We can weaken assumption (a) on B(u, v) in Theorem 2.3 by replac-
ing the L(Xα)-boundedness of the correcting field T0 in (4a) by L(Xα, Xα−ε)-
boundedness with a sufficiently small ε > 0. The corresponding version of Theo-
rem 2.8 could lead to new applications of the theory developed here and in [1].

§ 3. Partial differential equations
The above results enable us to establish that the limiting dynamics of equa-

tions (2) is finite-dimensional. We consider the differential operator ∂xxh = hxx
on L2(0, 1) either with the Sturm boundary conditions

h(0) cos µ0 + hx(0) sinµ0 = 0, h(1) cosµ1 + hx(1) sinµ1 = 0, (12a)

where µ0, µ1 ∈ (−π/2, π/2], or with periodic solutions

h(0) = h(1), hx(0) = hx(1). (12b)

Information concerning the spaces of differentiable functions used below can be
found in [22]–[24].
Let I = [0, 1] in case (12a) and let I be the circle of circumference 1 in case (12b).

We denote by Hs = Hs(I) the generalized Sobolev L2-spaces with arbitrary s � 0.
Note that the space Hs with s > 1/2 is a Banach algebra [22], 2.8.3. The operator
u → ux is a continuous map from Hs+1 to Hs. Embedding theorems imply that
if s, ν � 1 are integers and g : I × R2 → R is a smooth function, then the map
u → g(x, u, ux) belongs to the class BCν(Hs+1,Hs) if g ∈ Cs+ν and to the class4
BC(Hs+1,Hs) if g ∈ Cs.
The assumption on f(x, u, p) : I×R2 → R in (2) can be stated as follows.

Assumption 3.1. The function f belongs to C3. If in case (12a) µj = 0 for j = 0
or j = 1, then f(j, 0, p) = 0 for all p ∈ R.
We reduce equation (2) to (1) with X = L2(I). The linear operator ∂xx is

self-adjoint on X. If κ � 0 is suitably chosen, then the operator A = κI − ∂xx
4The classes of maps BCν and BC are defined in §1.



992 A. V. Romanov

is positive definite [25], Ch. 1, and discrete. Hence, it satisfies hypothesis (H1) and
generates a Hilbert semiscale {Xα}α�0. It is well known [23], Ch. 5, that Xα are
closed subspaces (with equivalent norms) in H2α, and Xα = H2α in case (12b).
The latter is also true for the boundary conditions (12a) for α � 1/4 (for α � 3/4
if µ0, µ1 �= 0). If α > 3/4, then we have continuous embeddings Xα ⊂ C1(I) and
Xα+1/2 ⊂ C2(I). The embedding C(I) ⊂ X is also continuous. This implies, in
particular, that F ∈ BC3(Xα, X) for the map F : u→ κu+f(x, u, ux). If for some
α ∈ (3/4, 1) equation (2) is dissipative in Xα, then hypotheses (H1)–(H3) hold for
its abstract form ∂tu = −Au + F (u). Hence, the constructions of §§ 1, 2 are valid.
Assumption 3.1 on the non-linear part of (2) (redundant in comparison with (H2))
implies supplementary qualities of phase dynamics. Let A be the attractor and
{Φt} the dissipative semiflow of (2) in Xα, let N = A×A, and let Y be a Banach
space.

Remark 3.2. If assumptions 3.1 and (H3) hold with α ∈ (3/4, 1), then equation (2)
has the following properties:
(a) the attractor A is bounded in X3/2 (or X2) if assumption (12a) (or (12b))

holds,
(b) every field Π: N → Y continuous in the (Xα × Xα)-metric that can be

extended to a C1-map X1 ×X1 → Y is regular.
Indeed, taking into account the relation between Xs andH2s, we deduce from 3.1

that F ∈ BC2(X1, X1/2). For the boundary conditions (12b) we have, moreover,
F ∈ BC1(X3/2, X1). Remarks 1.2 and 1.3 enable us to establish that A is compact
inX1 and the map (t, u)→ Φtu : (0,∞)×X1 → X1 is smooth. Hence, the identical
embedding N → X1 × X1 is regular (see Definition 2.1), which implies that (b)
holds. Finally, (a) follows directly from the remarks cited.
Conditions for the Xα-dissipativity of (2) can be obtained on the basis of well-

known a priori estimates [26], [9], [27] for solutions of these equations using abstract
methods of functional analysis [2], [9], [28]. For example, if f(x, u, p) satisfies
assumption 3.1 and, moreover, satisfies the following conditions [9], Ch. 1, § 7:
f(x, u, 0) signu→ −∞ as |u| → ∞ uniformly with respect to x ∈ I and

|f |+ |fx|+ |fu| �M(u)(1 + p2), |fp| �M(u)(1 + |p|),

then problem (2), (12a) with µ0 = µ1 = 0 (3/4 < α < 1) and the periodic prob-
lem (2), (12b) are Xα-dissipative. Indeed, for every u0 ∈ Xα ⊂ C1(I) equation (2)
has a local solution u(t) ∈ C([0, t∗), Xα), u(t) ∈ X1 on (0, t∗). If u0 ∈ X1, then
u(t) ∈ C([0, t∗), X1) (see Remark 1.2). In any case u(t) ∈ X3/2 for t ∈ (0, t∗),
that is, u(t) belongs to the Hölder class C2+δ(I) with some 0 < δ < 1, and The-
orems 1.7.2 and 2.5.1 in [9] are applicable. Although these theorems were proved
for Dirichlet boundary conditions, they can be proved in the periodic situation in
a similar way. One way or another, we establish that equation (2) has a solution
(global with respect to t > 0)

u(t) = Φtu0 ∈ Xα ∩ C2+δ(I), u0 ∈ Xα,

the phase semiflow {Φt} in Xα is (C(I), C(I))-bounded uniformly with respect
to t � 0, and there is an invariant compact set A ⊂ Xα that is a (C(I),
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C2+δ(I))-attractor. (We retain here the convenient terminology used in [9].) Since
the embeddings Xα ⊂ C(I) and C2+δ(I) ⊂ H2 are continuous, A is an (Xα, X1)-
attractor (A attracts balls B ⊂ Xα uniformly in the norm of X1 as t → +∞),
which implies that (2) is dissipative in Xα.
Let us explainwhywe cannot construct an inertial manifold for problems (2), (12).

If we number the eigenvalues λn ofA in increasing order and put an = (λn+1+λn)/2,
ξn = (λn+1−λn)/2 for n � 1, then [25] an ∼ cn2 and ξn ∼ cn as n→∞, c = const.
The spectral jump condition aαn = o(ξn), sufficient for the phase dynamics to be
“asymptotically finite-dimensional”, would imply the inequality α < 1/2, which is
impossible even under the most stringent conditions on the dependence on ux of
the non-linearity of f .
However, the limiting dynamics of equation (2) is finite-dimensional.

Theorem 3.3. Assume that 3.1 holds for f : I×R2 → R, and let α ∈ (3/4, 1). If
equation (2) with one of the boundary conditions (12) is dissipative in Xα, then its
phase dynamics on the attractor is finite-dimensional.

Proof. This reduces to the verification of the assumptions of Theorem 2.8. Rela-
tion (3) obviously holds for the positive-definite operator A. If u, h ∈ Xα, then

DF (u)h = κh+ fu(x, u, ux)h + fp(x, u, ux)hx.

Put

b(x; u, v) =

∫ 1
0

fp(x, w, wx) dτ, b0(x; u, v) =

∫ 1
0

fu(x, w, wx) dτ (13)

for u, v ∈ Xα and w = τu+ (1 − τ)v. It is convenient to treat these expressions
as Bochner integrals with values in suitable function spaces, which enables us to
analyze them using the corresponding technique [29], Ch. 3. Since f ∈ C3, we have
fp, fu ∈ C2, and the maps Π1 : u→ fp(x, u, ux) and Π2 : u→ fu(x, u, ux) belong to
BC(H3,H2). By Remark 3.2, (a), the convex hull Ac of the attractor A is bounded
in X3/2 ⊂ H3. Hence, the sets Π1Ac and Π2Ac are bounded in H2. Therefore,
the functions b, b0, and b

2 are bounded in the norms of the Banach algebras H2
and C1(I) uniformly with respect to (u, v) ∈ N . In the case of boundary condi-
tions (12b) we likewise obtain that these functions are uniformlyH3-bounded using
the fact that A is X2-bounded.
Formatting our formulae as we did in (4), we write

T (u, v)h = T0(u, v)h+ κh+ b0(x; u, v)h+ b(x; u, v)hx, (14a)

B(u, v) = (ω + κ)I − ∂xx − T (u, v) (14b)

for u, v ∈ A. Let us recall that the operator field T0 on N must be bounded as a
map with values in L(Xα) and regular as a map with values in L(Xα, X). First we
put T0 = 0 and choose a number ω > 0 using Lemma 4.1. We denote by S(u, v)
the operator of multiplication by a positive function ψ(x; u, v) ∈ C2[0, 1] such that
(lnψ)x = b/2 and ψ

∣∣
x=0
= 1 (this operator is continuous in X = L2(I)). In the

case of periodic boundary conditions we have, generally speaking, ψ
∣∣
x=1
�= 1 and
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ψ /∈ C(I). The transformation η = S(u, v)h for h ∈ X1 enables us to write the
operators B = B(u, v) as B = S−1HS, where H = H(u, v),

H(u, v)η = ωη − ηxx − q(x; u, v)η (15)

and q = b0 − b2/4 − bx/2. The functions q ∈ H1 ⊂ C(I) are bounded in the
norm of H1 uniformly with respect to u, v ∈ A. The domain D(H) of operators H
coincides with SD(B), where D(B) = D(A) = X1, that is, the boundary conditions
can change when we pass from B to H. Nevertheless, the type of (12a) is, on
the whole, preserved, and the operators H(u, v) turn out to be sef-adjoint in X.
Conditions (12b) are transformed into η(1) = ρη(0) and ηx(1) = ρηx(0) with ρ =
ψ
∣∣
x=1
(since the functions fp and b are periodic in x). Here the H(u, v) with ρ �= 1

are not even normal. In both cases we have5 ‖S‖ = |ψ|C , and that of the operator
field S : N → L(X) follows from that of the function field ψ( · ; u, v) : N → C[0, 1],
which, in turn, follows from that of the function field b( · ; u, v) : N → C(I). Using
the fact that the non-linear operator (u, v)→ fp(x, w, wx) : Xα ×Xα → C(I) with
w = τu+(1−τ)v, τ ∈ [0, 1], is C1-smooth and differentiating the expressions in (13)
with respect to the parameter (u, v) ∈ Xα ×Xα under the integrals, we establish
that the map Π: (u, v)→ b( · ; u, v) belongs to the class C1(Xα×Xα, C(I)). Hence,
its restriction to N is regular. We prove likewise that the function field b0 : N →
C(I) in (13) is regular. We deduce the regularity of the field b2 : N → C(I) from
that of b using the multiplicative structure of C(I).
Hence, in the case of the Sturm conditions (12a) the operators H(u, v) are self-

adjoint, the field S is regular, and ‖S−1‖ = |ψ−1|C � const on N . Therefore,
B : N → L(X1, X) is an operator field of uniformly scalar type in the sense of
Definition 2.2. Since Σ = Σ(B) ⊂ R+, the assumption Σ ⊂ Ω(k, θ) ∩ Ω(k, 1) of
Theorem 2.8 obviously holds with θ = 0 and any k > 0.
Let us establish that Σ is sufficiently rarefied. Using the asymptotics [25], Ch. 1,

of the eigenvalues of the operators (15), we see that (in terms of Theorem 2.8) we
can put an = π

2n2 + cn and ξn = π
2n + c1 with n � n0, where c, c1 and n0

depend on µ0, µ1 and the majorant of H1-norms of the functions q( · ; u, v). In the
same terms we have β = α/2 < 1/2 and aβn = o(ξn) as n→∞, which completes
the proof of Theorem 3.3 for problem (2), (12a).
Now let us consider the periodic conditions (12b). We put T0(u, v)h =

−q(x; u, v)h in (14a). The operator field B(u, v) in (14b) changes accordingly.
In this situation Xα = H2α is a Banach algebra and, as mentioned above, the
functions b, b0 and b

2 are bounded in the norm of H3 uniformly with respect to
(u, v) ∈ N . Therefore, |q( · ; u, v)|1 � const. Consequently, |q( · ; u, v)|α � const.
Hence, the multipliers T0(u, v) belong to L(Xα) and ‖T0(u, v)‖α � const for u, v ∈
A. Formulae (14b) and (15) imply that B = S−1H0S, where S(u, v) are the oper-
ators defined above and H0 = H0(u, v) = ωI − ∂xx with the boundary conditions
h(1) = ρh(0), hx(1) = ρhx(0) and ρ = ρ(u, v) = ψ(x; u, v)

∣∣
x=1
> 0. It is easy to

calculate the eigenvalues λ and the eigenfunctions χ(x) of the operator (−∂xx):

λ0 = − ln2 p, λn,1 = (2πn − i ln ρ)2, λn,2 = (2πn+ i lnρ)
2,

χ0 = ρ
x, χn,1 = ρ

xe2πnix, χn,2 = ρ
xe−2πnix

(16)

5| · |C is the norm in C[0, 1].
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for n � 1. The system of functions {χ0, χn,1, χn,2} is complete and orthogonal
in L2(I) with the weight ρ−2x. Hence, H0 = S

−1
0 H1S0, where the operators H1 =

H1(u, v) are normal in X, D(H1) = D(A) = X1 and S0(u, v)h = ρ−xh for h ∈ X.
We see that B = S−11 H1S1 with S1 = S0S and ‖S−11 ‖ � ‖S−1‖ · ‖S−10 ‖ � const
on N .
In the context of the assumptions of Theorem 2.8 and Definition 2.2, the operator

fields S1 : N → L(X) and T0 : N → L(Xα, X) should be regular. The above-
proved regularity of the fields ψ and S implies that the fields S0, S1 : N → L(X)
are regular. Since the embedding Xα ⊂ C(I) is continuous, ‖T0‖α,0 � c|q| (here | · |
is the norm inX and the constant c does not depend on q) and the field T0 is regular
if the function field q : N → X, q = b0 − b2/4 − bx/2, is regular. The function
fields b0 and b

2 on N are regular as maps with values in C(I). Hence, they are
regular as maps with values in X.
Let Πτ (u, v) = (fp(x, w, wx))x with w = τu + (1 − τ)v, τ ∈ [0, 1] and arbitrary

u = u(x), v = v(x) ∈ X1, and let Π(u, v) be the result of integrating Πτ (u, v)
with respect to τ . It is clear that Π(u, v) = (b(x; u, v))x for u, v ∈ A ⊂ X1. By
Remark 3.2, (b) the regularity of the function field bx : N → X will follow from
the inclusions Π

∣∣
N ∈ C(N , X) and Π ∈ C

1(X1 × X1, X). Since f ∈ C3 and
fp ∈ C2, the map u → fp(x, u, ux) belongs to the class BC1(X1, X1/2), whence
Πτ ∈ C1(X1×X1, X). Differentiating the integral expression for Π with respect to
the parameter (u, v) ∈ X1×X1, we obtain that Π ∈ C1(X1×X1, X). Further, the
operators u → g(x, u, ux), g = fpx, fpu, fpp, act continuously from Xα to C(I)
and (fp(x, u, ux))x = fpx + fpuux + fppuxx for u ∈ Ac ⊂ X1. By Lemma 1.1,
the function u → Au : A → X, Au = κu − uxx, is continuous in the Xα-metric.
The same is true for the maps u → uxx and u → ux from Ac to X. Hence,
Πτ ,Π

∣∣
N ∈ C(N , X), the fields bx, q and T0 are regular, and B(u, v) is an operator

field of uniformly scalar type on N .
It remains to specify the value of ω in (14b) and to find sufficiently wide lacunae

in Σ = Σ(B) ⊂ C = {x + iy}. Let ω > ln2 ρ(u, v) + 1 on N . Then (16) implies
that Σ ⊂ Ω(k, θ), θ = 1/2, k = 2(ω − 1)1/2. In fact Σ is contained in the
domain |y| � k(x− 1)θ, whence Σ ⊂ Ω(k1, 1) with k1 = k1(ω) > 0. Formatting our
statements as in Theorem 2.8, we put an = 4π

2(n2+n+1/2) and ξn = 2π
2(n+1/2)

for n > ω/2π2. Moreover, θ > α/2 and β = (α+θ)/3 < 1/2, since α < 1. Therefore,
aβn = o(ξn) as n→∞. Hence, the limiting dynamics for problem (2), (12b) is finite-
dimensional, which completes the proof of Theorem 3.3.

Note that Theorem 2.8 implies that (7) holds for the dynamics of (2) on the
attractor A. The structure of Wa and the value of a in (7) depend on the choice
of T0 and ω in (14).
For example, the reaction-diffusion equation with non-linear convection,

ut = uxx + (g(x, u))x + g0(x, u), x ∈ (0, 1),
with standard conditions at x = 0, 1 has finite-dimensional limiting dynamics.
Assumptions on the smooth functions g and g0 are determined by Assumption 3.1
and the dissipativity of the equation under investigation in Xα with α ∈ (3/4, 1).
Remark 3.4. Theorem 3.3 can be generalized to one-dimensional systems

ujt = (d(x)u
j
x)x + fj(x, u, ux), 1 � j � l,
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where u = (u1, u2, . . . , ul), with the Dirichlet boundary condition (the coefficient
d(x) > 0 is smooth on [0, 1]) if we use the above-mentioned analogue of the Liouville
transformation [16].

Apparently, it can be proved that semilinear parabolic equations of order greater
than two on (0, 1) have finite-dimensional limiting dynamics if the boundary con-
ditions are not too pathological and the non-linear part satisfies appropriate condi-
tions. However, the proof of such statements would involve a certain modification
of the constructions used in § 2 (see Remark 2.9) and in this section.

§ 4. Appendix
In this appendix we collect technical statements concerning the properties of the

derivative of the vector field F (u) − Au of equation (1) in the Banach space X.
As before, we start from the basic hypotheses (H1)–(H3). We write λ = x + iy
for λ ∈ C. Let us recall that A is the attractor of (1) in Xα, N = A × A, the
spectrum σ(A) is contained in the sector Ω = {λ: |y| < kx} with k > 0 and the
estimate ‖R(λ;A)‖ �M/(1 + |λ|) for the resolvent R(λ;A) = (A− λI)−1 holds in
Ω1 = C \ Ω. Our notation for spaces and norms of linear operators corresponds to
that assumed in § 2. Operator fields T and B on N are defined by formulae (4a)
and (4b) with ω � ω0, where ω0 is the constant that occurs in the next lemma.
The field T : N → L(Xα, X) is regular in the sense of Definition 2.1.
Lemma 4.1. For ω � ω0 > 0 and B = B(u, v) with u, v ∈ A, the spectrum σ(B)
is contained in Ω,

‖R(λ;B)‖ � M1
1 + |λ| (17)

if λ ∈ Ω1, and
‖AαB−α‖ � L, ‖BαA−α‖ � L. (18)

The constants M1 and L depend only on A. The constant ω0 depends only on A, F
and T0, where T0 is the field of operators in (4a).

We shall use the moment inequality [2], Theorem 1.4.4,

‖AαV ‖ � Θ‖AV ‖α‖V ‖1−α (19)

for the sectorial operator A with V , AV ∈ L(X) and Θ = Θ(k,M). For the
rest of this appendix, c, c1, . . . are constants depending only on A, F and T0. We
identify the dependence of any objects on the operator A with their dependence
on the parameters (k,M), although these parameters cannot be determined unam-
biguously from A.

Proof. Since the operator field T = T (u, v) is regular, we have ‖TA−α‖ � c on N .
Let R = R(λ;A) for λ ∈ Ω1. Then (formally) R(λ;A − T ) = R(I − TR)−1 and
λ /∈ σ(A − T ) if ‖TR‖ < 1. It is clear that

‖TR‖ = ‖TA−αAαR‖ � c‖AαR‖.

Since AR = I + λR ∈ L(X), formula (19) implies that

‖AαR‖ � Θ‖AR‖α‖R‖1−α.
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Hence,

‖TR‖ � cΘ
(
‖R‖1−α+ |λ|α‖R‖

)
.

Using the estimate for R(λ;A), we obtain that

‖TR‖ � c1(1 + |λ|)α−1, c1 = cΘ(M
1−α +M).

Hence, ‖TR‖ � 1/2 if |λ|1−α � 2c1, and geometrical arguments show that for all
u, v ∈ A the spectrum σ(A−T (u, v)) is contained in the sector |y| < k(x+ω0) with
ω0 = ρκ, ρ

1−α = 2c1 and κ = (1 + k
−2)1/2, where ω0 = ω0(k,M, T ), that is, ω0

in fact depends on A, F and T0. Outside the specified sector we have ‖TR‖ � 1/2
and ‖(I − TR)−1‖ � (1− ‖TR‖)−1 � 2, whence

‖R(λ;A− T )‖ � 2‖R(λ;A)‖ � 2M/(1 + |λ|).

If ω � ω0 in (4b), then σ(B(u, v)) ⊂ Ω and ‖R(λ;B)‖ � 2M/(1+ |λ−ω|) on Ω1.
Solving an elementary extremum problem, we obtain that

|λ| � κ|λ− ω|, ‖R(λ;B)‖ �M1(1 + |λ|)

with M1 = 2κM if λ ∈ Ω1. The operators AαB−α and BαA−α are bounded
in X by Theorem 1.4.6 in [2]. A careful analysis of the corresponding calculations
in [2] shows that the norms of these operators can be estimated in terms of k, M
and M1 =M1(k,M), which completes the proof of the lemma.

Let us recall that r(λ) is the distance from λ ∈ C to the total spectrum Σ = Σ(B),
R = C \Σ, and Γa is the straight line x = a in C. We have just proved that Σ ⊂ Ω
and R ⊃ Ω1. The projectors Pa were defined in § 2.

Lemma 4.2. If Γa ⊂ R for some a > 0 and

‖R(λ;B)‖ � c

r(λ)
on R (20)

for B = B(u, v), u, v ∈ A, then the projector field Pa : N → L(Xα) is regular and
the integral representation (9) holds for ∂tPa(u, v), where the kernel E(λ; u, v) ∈
L(Xα) is holomorphic in λ ∈ R and satisfies estimate (10).

Proof. Consider the triangular positively oriented contour Γ ⊂ R in C with vertices
(0, 0), (a,−ka) and (a, ka), where k is the parameter of the sectorial operator A.
Let (u, v) ∈ N , T = T (u, v) and R = R(λ;B) = R(λ; u, v) for λ ∈ R. Let us use
the Riesz formula

Pa(u, v) = −
1

2πi

∫
Γ

R(λ; u, v) dλ. (21)

Since BR = I + λR, we have BR ∈ L(X), BαR ∈ L(X) and R ∈ L(X,Xα).
Taking into account (18), we obtain that

‖R‖0,α = ‖AαR‖ = ‖AαB−αBαR‖ � L‖BαR‖.
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Putting V = R in (19) and replacing A by the sectorial operator B, we deduce that

‖BαR‖ � Θ
(
‖R‖1−α + |λ|α‖R‖

)
.

Lemma 4.1 implies that Θ = Θ(k,M1) = Θ(A).
Formula (20) shows that

‖R‖0,α � c1
(
‖R‖1−α + |λ|α‖R‖

)
� K(Λ)

on Λ × N for an arbitrary closed set Λ ⊂ R. Since the field T : N → L(Xα, X)
is regular, the second resolvent identity [24], 3.2.1, enables us to establish that the
operator field R : N → L(X,Xα) is regular for every λ ∈ Λ. We establish likewise
that ∂tR = R∂tTR and the inequality

‖∂tR‖0,α � c2
(
‖R‖1−α + |λ|α‖R‖

)2 � K1(Λ)
holds. Let us note that for Λ = (−∞, 0] the arguments used in this paragraph
remain valid if we replace assumption (20) by estimate (17).
We have established that ‖R(λ; u, v)‖0,α � const on Γ × N . The above-

cited resolvent identity enables us to deduce the continuity of the field Pa : N →
L(X,Xα) from that of the field R : N → L(X,Xα) with λ ∈ Γ. The function
∂tT (Φtu,Φtv) : (u, v, t)→ L(Xα, X) is bounded on N × [0,∞) and continuous with
respect to t � 0. Therefore, the function ∂tR(λ; Φtu,Φtv) : (λ, u, v, t)→ L(X,Xα)
is bounded on Γ × N × [0,∞) and continuous with respect to t � 0. Therefore,
we can differentiate the integral (21) with respect to t along the solutions of equa-
tion (1) and the projector field Pa is regular as a map with values in L(X,Xα).
Hence, this field is regular as a map with values in L(Xα). For the derivative
∂tPa(u, v) at zero we obtain an expression similar to (9) with kernel

E(λ) = E(λ; u, v) = −∂tR(λ; u, v) ∈ L(Xα)

holomorphic on R and contour of integration Γ. Formula (18) and the identity
RBα = BαR imply that

‖R‖α = ‖AαB−αRBαA−α‖ � L2‖R‖.

Since ‖∂tT‖α,0 � c3, we have

‖E(λ)‖α � c3‖R‖0,α‖R‖α � c4
(
‖R‖2−α+ |λ|α‖R‖2)

on R, and the desired estimate (10) follows from inequality (20). Inequality (17)
implies that ‖R(λ;B)‖ = O(|λ|−1) as λ → ∞ in Ω1. Therefore, ‖E(λ)‖α =
O(|λ|α−2), α < 1. Taking into account that E(λ) is holomorphic, we obtain the
representation (9) for ∂tPa(u, v) with contour of integration Γa, which completes
the proof of the lemma.
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Lemma 4.3. Let B = B(u, v), u, v ∈ A. Then the operator fields B−α : N →
L(X,Xα) and Bα : N → L(Xα, X) are regular. The estimate

‖(∂tBα)B−α‖ � N (22)

holds on N with a constant N = N(A, F, T0).

Proof. We can assume without loss of generality that α > 0. It is well known [2],
§ 1.4, that

B−α =
sinπα

π

∫ 0
−∞
|λ|−αR(λ;B) dλ (23)

for B = B(u, v). If λ � 0, then the intermediate results obtained in the preceding
proof imply that the field R(λ;B) : N → L(X,Xα) is regular and ∂tR = R∂tTR.
Using formula (17), we write the estimates for R and ∂tR obtained there as

‖R‖0,α � c1(1 + |λ|)α−1, ‖∂tR‖0,α � c2(1 + |λ|)2α−2.

Let us emphasize that all this is true without condition (20) on R(λ;B). The
second resolvent identity enables us to deduce the continuity of the field B−α : N →
L(X,Xα) from that of the field R : N → L(X,Xα) with λ � 0. The function
ψ(λ) = |λ|−α(1 + |λ|)2α−2 is integrable on (−∞, 0). Applying Lebesgue’s theorem
on passage to the limit under the integral and using the above arguments, we
see that it is possible to differentiate expression (23) with respect to t along the
solutions of equation (1) and the field B−α is regular. Using (18), we have

‖Bα∂tR‖ = ‖BαA−αAα∂tR‖ � L‖∂tR‖0,α � c3(1 + |λ|)2α−2.

Formula (23) implies that ‖Bα∂tB−α‖ � N for u, v ∈ A with N = N(A, F, T0).
It remains to observe that BαB−α = I and ‖Bα‖α,0 = ‖BαA−α‖ � L. The

regularity of the field Bα can be deduced from that of B−α by obvious operator
transformations. We have (∂tB

α)B−α + Bα∂tB
−α = 0, whence ‖(∂tBα)B−α‖ =

‖Bα∂tB−α‖ � N , which completes the proof of the lemma.
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