Ordinary Differential Equations

Dalibor Pražák, Josef Žabenský

Problem Set 3

- **3.1.** Let $x(t) = \varphi(t, t_0, x_0)$ solve x' = f(t, x) with the initial condition $x(t_0) = x_0$. Find $\frac{\partial}{\partial x_0} \varphi(t, t_0, x_0)$ for given t_0 and x_0 if
 - (a) $f = 2x + t^2 x^2 x^3, x(0) = 0$
 - (b) $f = \ln(1-x) x^2 t^2 x^2$, x(0) = 0
 - (c) $f = t(1 x^2), x(t_0) = 1, t_0 \in \mathbb{R}$
- **3.2.** Let $x(t) = \varphi(t, t_0, x_0)$ solve x' = f(t, x) with the initial condition $x(t_0) = x_0 \in \mathbb{R}$ and $f \in C^2(\mathbb{R}^2)$. Derive the equation for $\frac{\partial^2}{\partial x_0^2}\varphi(t, t_0, x_0)$ and compute $\frac{\partial^2}{\partial x_0^2}\varphi(t, 0, 1/2)$ for the equation presented by me, i.e. $f = e^{2x} e$. You can consider all information I have deduced as already known. Expand then $\varphi(t, 0, h + 1/2)$ for small h up to the second-order term.
- **3.3.** Let $x(t) = \varphi(t, t_0, x_0, \lambda)$ be the solution to $x' = f(t, x, \lambda), x(t_0) = x_0 \in \mathbb{R}$ with λ being a real parameter. Consider a beautifully smooth $f \in C^1(\mathbb{R}^3)$. Find the equation for $\frac{\partial \varphi}{\partial \lambda}$ and apply your discovery to compute $\frac{\partial \varphi}{\partial \lambda}(t, 1, 0, 1)$ for $x' = \lambda \cos(\lambda \pi) x + t\lambda$.
- **3.4.** Let I be an open interval, $f = f(t, x, x') \in C^1(I \times \mathbb{R}^2)$ and $x(t) = \varphi(t, t_0, x_0^1, x_0^2)$ solve

5

$$x'' = f(t, x, x'),$$

 $x(t_0) = x_0^1,$
 $x'(t_0) = x_0^2.$

Derive equations for $u(t) = \frac{\partial}{\partial x_0^1} \varphi(t, t_0, x_0^1, x_0^2)$ and $v(t) = \frac{\partial}{\partial x_0^2} \varphi(t, t_0, x_0^1, x_0^2)$. Finally, apply the result to f = 4x' + 21x - 3, $t_0 = 0$ and compute the respective partial derivatives.

3.5. Food for thought: Bobek the rabbit is hiding in one of five hats that are lined up in a row. The hats are numbered 1 to 5. Each night Bobek hops into an adjacent hat, exactly one number away. Each morning you can peek into a single hat to test whether Bobek is inside. Can you think up a strategy to find him?