Problem Set 3

3.1. Let $x(t)=\varphi\left(t, t_{0}, x_{0}\right)$ solve $x^{\prime}=f(t, x)$ with the initial condition $x\left(t_{0}\right)=x_{0}$. Find $\frac{\partial}{\partial x_{0}} \varphi\left(t, t_{0}, x_{0}\right)$ for given t_{0} and x_{0} if
(a) $f=2 x+t^{2} x^{2}-x^{3}, x(0)=0$
(b) $f=\ln (1-x)-x^{2}-t^{2} x^{2}, x(0)=0$
(c) $f=t\left(1-x^{2}\right), x\left(t_{0}\right)=1, t_{0} \in \mathbb{R}$
3.2. Let $x(t)=\varphi\left(t, t_{0}, x_{0}\right)$ solve $x^{\prime}=f(t, x)$ with the initial condition $x\left(t_{0}\right)=x_{0} \in \mathbb{R}$ and $f \in C^{2}\left(\mathbb{R}^{2}\right)$. Derive the equation for $\frac{\partial^{2}}{\partial x_{0}^{2}} \varphi\left(t, t_{0}, x_{0}\right)$ and compute $\frac{\partial^{2}}{\partial x_{0}^{2}} \varphi(t, 0,1 / 2)$ for the equation presented by me, i.e. $f=e^{2 x}-e$. You can consider all information I have deduced as already known. Expand then $\varphi(t, 0, h+1 / 2)$ for small h up to the second-order term.
3.3. Let $x(t)=\varphi\left(t, t_{0}, x_{0}, \lambda\right)$ be the solution to $x^{\prime}=f(t, x, \lambda), x\left(t_{0}\right)=x_{0} \in \mathbb{R}$ with λ being a real parameter. Consider a beautifully smooth $f \in C^{1}\left(\mathbb{R}^{3}\right)$. Find the equation for $\frac{\partial \varphi}{\partial \lambda}$ and apply your discovery to compute $\frac{\partial \varphi}{\partial \lambda}(t, 1,0,1)$ for $x^{\prime}=\lambda \cos (\lambda \pi) x+t \lambda$.
3.4. Let I be an open interval, $f=f\left(t, x, x^{\prime}\right) \in C^{1}\left(I \times \mathbb{R}^{2}\right)$ and $x(t)=\varphi\left(t, t_{0}, x_{0}^{1}, x_{0}^{2}\right)$ solve

$$
\begin{aligned}
x^{\prime \prime} & =f\left(t, x, x^{\prime}\right), \\
x\left(t_{0}\right) & =x_{0}^{1}, \\
x^{\prime}\left(t_{0}\right) & =x_{0}^{2} .
\end{aligned}
$$

Derive equations for $u(t)=\frac{\partial}{\partial x_{0}^{1}} \varphi\left(t, t_{0}, x_{0}^{1}, x_{0}^{2}\right)$ and $v(t)=\frac{\partial}{\partial x_{0}^{2}} \varphi\left(t, t_{0}, x_{0}^{1}, x_{0}^{2}\right)$. Finally, apply the result to $f=4 x^{\prime}+21 x-3, t_{0}=0$ and compute the respective partial derivatives.
3.5. Food for thought: Bobek the rabbit is hiding in one of five hats that are lined up in a row. The hats are numbered 1 to 5 . Each night Bobek hops into an adjacent hat, exactly one number away. Each morning you can peek into a single hat to test whether Bobek is inside. Can you think up a strategy to find him?

