Ordinary Differential Equations

ZS 17/18
Dalibor Pražák, Josef Žabenský

Problem Set 4

4.1. Solve the systems corresponding to the following matrices:
(a) $A=\left(\begin{array}{rr}-2 & -3 \\ 6 & 7\end{array}\right)$
(b) $A=\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right)$
4.2. Solve

$$
\begin{array}{ll}
x^{\prime}=-y-t, & x(0)=1 \\
y^{\prime}=x+t, & y(0)=0
\end{array}
$$

Calculating the integral is completely voluntary.
4.3. Find a 2×2 matrix such that $(x(t), y(t))=\left(\sinh (t), e^{t}\right)$ is a solution.
4.4. Which of the following functions $(x(t), y(t))$
(a) $\left(3 e^{t}+e^{-t}, e^{2 t}\right)$
(b) $\left(3 e^{t}+e^{-t}, e^{t}\right)$
(c) $\left(3 e^{t}+e^{-t}, t e^{t}\right)$
(d) $\left(3 e^{t}, t^{2} e^{t}\right)$
(e) $\left(e^{t}+2 e^{-t}, e^{t}+2 e^{-t}\right)$
can be solutions of a first-order autonomous homogeneous system?
4.5. Function $u: \mathbb{R} \rightarrow \mathbb{R}$ fulfills $u(0)=0, u^{\prime}(0)=1$ and $u^{\prime \prime}(t) \geq-u(t)$ for all $t \in[0, \pi]$. Show that $u(t) \geq \sin (t)$ for all $t \in[0, \pi]$.
Hint: Rewrite the given inequality as $u^{\prime \prime}(t)+u(t)=f(t)$ with $f \geq 0$ and solve this ODE by means of variation of constants. Recall that you have to work with a first-order ODE in the first place.
4.6. Is there a real matrix A such that

$$
\exp (A)=\left(\begin{array}{rr}
-\alpha & 0 \\
0 & -\beta
\end{array}\right), \quad \alpha, \beta>0 ?
$$

What if α and β are distinct?
Hint: If desperate, recall $\sigma(\exp (A))=\exp (\sigma(A))$. If still desperate, $\operatorname{try} A=\left(\begin{array}{rr}a & \pi \\ -\pi & a\end{array}\right)$.
4.7. By means of the matrix exponential show $A^{2}=-I \Rightarrow \sigma(A)=\{ \pm i\}$ for any complex square matrix A.

Hint: In other words $A^{2}=-I \Rightarrow \sigma(\pi A)=\{ \pm \pi i\}$.
4.8. Food for thought: There are 25 mechanical horses and a single racetrack. Each horse completes the track in a pre-programmed time, and the horses all have different finishing times, unknown to you. You can race 5 horses at a time. After a race is over, you get a list with the order the horses finished, but not the finishing times of the horses. What is the minimum number of races you need to identify the fastest 3 horses?

