Ordinary Differential Equations

Dalibor Pražák, Josef Žabenský

Problem Set 4

4.1. Solve the systems corresponding to the following matrices:

(a)
$$A = \begin{pmatrix} -2 & -3 \\ 6 & 7 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

4.2. Solve

$$x' = -y - t,$$
 $x(0) = 1,$
 $y' = x + t,$ $y(0) = 0.$

Calculating the integral is completely voluntary.

- **4.3.** Find a 2×2 matrix such that $(x(t), y(t)) = (\sinh(t), e^t)$ is a solution.
- **4.4.** Which of the following functions (x(t), y(t))
 - (a) $(3e^t + e^{-t}, e^{2t})$
 - (b) $(3e^t + e^{-t}, e^t)$
 - (c) $(3e^t + e^{-t}, te^t)$
 - (d) $(3e^t, t^2e^t)$
 - (e) $(e^t + 2e^{-t}, e^t + 2e^{-t})$

can be solutions of a first-order autonomous homogeneous system?

4.5. Function $u: \mathbb{R} \to \mathbb{R}$ fulfills u(0) = 0, u'(0) = 1 and $u''(t) \ge -u(t)$ for all $t \in [0, \pi]$. Show that $u(t) \ge \sin(t)$ for all $t \in [0, \pi]$.

Hint: Rewrite the given inequality as u''(t) + u(t) = f(t) with $f \ge 0$ and solve this ODE by means of variation of constants. Recall that you have to work with a first-order ODE in the first place.

4.6. Is there a real matrix A such that

$$\exp(A) = \begin{pmatrix} -\alpha & 0\\ 0 & -\beta \end{pmatrix}, \quad \alpha, \beta > 0?$$

What if α and β are distinct?

Hint: If desperate, recall $\sigma(\exp(A)) = \exp(\sigma(A))$. If still desperate, try $A = \begin{pmatrix} a & \pi \\ -\pi & a \end{pmatrix}$.

- **4.7.** By means of the matrix exponential show $A^2 = -I \Rightarrow \sigma(A) = \{\pm i\}$ for any complex square matrix A. *Hint:* In other words $A^2 = -I \Rightarrow \sigma(\pi A) = \{\pm \pi i\}$.
- **4.8.** Food for thought: There are 25 mechanical horses and a single racetrack. Each horse completes the track in a pre-programmed time, and the horses all have different finishing times, unknown to you. You can race 5 horses at a time. After a race is over, you get a list with the order the horses finished, but not the finishing times of the horses. What is the minimum number of races you need to identify the fastest 3 horses?