Ordinary Differential Equations
Dalibor Pražák, Josef Žabenský

Problem Set 8

8.1. Let $x:[0, \infty) \rightarrow \mathbb{R}$ be twice differentiable such that $x(0)=\frac{1}{2}, x^{\prime}(0)=1$ and

$$
x^{\prime \prime}(t)-3 x^{\prime}(t)+2 x(t) \geq 1 \quad \text { for all } t \geq 0
$$

Prove that then

$$
x(t) \geq e^{2 t}-e^{t}+\frac{1}{2} \quad \text { for all } t \geq 0
$$

8.2. Investigate stability of the origin:
(a) $x^{\prime}=-2 y^{3}, y^{\prime}=x$
(b) $x^{\prime}=-x^{3}-2 y, y^{\prime}=x-y^{3}$
(c) $x^{\prime}=-x-y^{2}, y^{\prime}=x y-x^{2} y$

Hint: For (b) and (c) try $V=a x^{2}+b y^{2}$ for appropriate a, b.
8.3. Let $V(x, y)=x^{2}(x-1)^{2}+y^{2}$. Consider the system

$$
\begin{aligned}
x^{\prime} & =-\frac{\partial V}{\partial x} \\
y^{\prime} & =-\frac{\partial V}{\partial y}
\end{aligned}
$$

(a) (voluntary, but practice makes perfect!) Find the critical points of this system and determine their linear stability.
(b) Show that V decreases along every non-stationary solution of the system.
(c) Use the previous point to show that if $z_{0}=\left(x_{0}, y_{0}\right)$ is a global minimum of V then z_{0} is a locally asymptotically stable equilibrium.
8.4. Have a continuous function g such that $u g(u)>0$ if $u \neq 0$. Decide if the origin is a stable equilibrium for
(a) $u^{\prime \prime}+g\left(u^{\prime}\right)+u=0$
(b) $u^{\prime \prime}+g(u)=0$

Hint for (b): Find the first integral.
8.5. Christmas cookie: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be bounded, differentiable and satisfying $f^{2}(x) f^{\prime}(x) \geq \sin (x)$ for all $x \geq 0$. Show that $\lim _{x \rightarrow \infty} f(x)$ does not exist.

