Ordinary Differential Equations

Dalibor Pražák, Josef Žabenský

Problem Set 8

8.1. Let $x: [0,\infty) \to \mathbb{R}$ be twice differentiable such that $x(0) = \frac{1}{2}$, x'(0) = 1 and

$$x''(t) - 3x'(t) + 2x(t) \ge 1$$
 for all $t \ge 0$

Prove that then

$$x(t) \ge e^{2t} - e^t + \frac{1}{2}$$
 for all $t \ge 0$.

8.2. Investigate stability of the origin:

- (a) x' = −2y³, y' = x
 (b) x' = −x³ − 2y, y' = x − y³
- (c) $x' = -x y^2, y' = xy x^2y$

Hint: For (b) and (c) try $V = ax^2 + by^2$ for appropriate a, b.

8.3. Let $V(x, y) = x^2(x - 1)^2 + y^2$. Consider the system

$$x' = -\frac{\partial V}{\partial x}$$
$$y' = -\frac{\partial V}{\partial y}$$

- (a) (voluntary, but practice makes perfect!) Find the critical points of this system and determine their linear stability.
- (b) Show that V decreases along every non-stationary solution of the system.
- (c) Use the previous point to show that if $z_0 = (x_0, y_0)$ is a global minimum of V then z_0 is a locally asymptotically stable equilibrium.
- 8.4. Have a continuous function g such that ug(u) > 0 if $u \neq 0$. Decide if the origin is a stable equilibrium for
 - (a) u'' + g(u') + u = 0
 - (b) u'' + g(u) = 0

Hint for (b): Find the first integral.

8.5. Christmas cookie: Let $f : [0, \infty) \to \mathbb{R}$ be bounded, differentiable and satisfying $f^2(x)f'(x) \ge \sin(x)$ for all $x \ge 0$. Show that $\lim_{x \to \infty} f(x)$ does not exist.