Ordinary Differential Equations

Dalibor Pražák, Josef Žabenský

Problem Set 9

9.1. Let I be an interval, q be a continuous function defined in this interval and let y be a non-trivial solution of $y^{\prime \prime}+q(t) y=0$ in I. Consider a number $a>0$. Show that
(a) if $q(t) \geq a$ in I then the adjacent zero points of y in I are placed at most π / \sqrt{a} apart.
(b) if $q(t) \leq a$ in I then the adjacent zero points of y in I are placed at least π / \sqrt{a} apart.
9.2. Verify that every solution of $y^{\prime \prime}+\frac{y}{\sqrt{t}}=0$ has infinitely many zero points in $(0, \infty)$.
9.3. Let $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ with continuous p, p^{\prime} and q. Find a function $u(t)$ such that the substitution $z(t)=u(t) y(t)$ transforms the equation into $z^{\prime \prime}+r(t) z=0$. Express $r(t)$ by means of $p(t)$ and $q(t)$.
9.4. Prove that any non-trivial solution of
(a) $y^{\prime \prime}+\sin (t) y=0$ has at most 2 zero points in $[-\pi, \pi]$.
(b) $y^{\prime \prime}+2 t y^{\prime}+4 t y=0$ has at most 4 zero points in \mathbb{R}.

Farewell Gift

Putnam 2/6 Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for all real numbers x and all positive integers n.
Putnam 2/6 Functions f, g, h are differentiable on some open interval around 0 and satisfy

$$
\begin{aligned}
& f^{\prime}=2 f^{2} g h+\frac{1}{g h}, \quad f(0)=1, \\
& g^{\prime}=f g^{2} h+\frac{4}{f h}, \quad g(0)=1, \\
& h^{\prime}=3 f g h^{2}+\frac{1}{f g}, \quad h(0)=1 .
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .
Putnam 5/6 Show that there is no strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x.
Putnam 5/6 Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-f(x)^{2}}{x^{2}\left(f(x)^{2}+1\right)} \quad \text { for all } x>1
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.

