(1) [Adam Zaplatílek]

Let B be a closed ball in R^{n}. Show that the dynamical system (φ, B) has a stationary point. Deduce that any periodic orbit in R^{2} has at least one stationary point in its interior.

(2) [Michael Zelina]

Show that the problem

$$
\begin{aligned}
x^{\prime} & =\sin y \\
y^{\prime} & =x+u
\end{aligned}
$$

is globally controllable.

(3) [Mikuláš Zindulka]

Consider the control problem

$$
\begin{aligned}
x^{\prime} & =\cos 2 \pi u \\
y^{\prime} & =\sin 2 \pi u \\
z^{\prime} & =-1
\end{aligned}
$$

Show that $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,1) \in \mathcal{R}(1)$; in fact, there are many controls that bring this initial state to zero at $t=1$.
However, show that the cost functional

$$
P[u]=\int_{0}^{1} x^{2}(t)+y^{2}(t) d t
$$

does not attain its minimum.
What is the geometric meaning of the problem?

Hints.

1. Apply Brouwer's Theorem to $F_{n}(x)=\varphi\left(1 / 2^{n}, x\right)$ to find an orbit of period $1 / 2^{n}$. By taking a subsequence, find an orbit with arbitrarily small period. Show that this must be a stationary point.
2. Use linearization to show local controllability. By elementary qualitative analysis investigate solutions for various values of u to obtain the global case.
Cf. also úloha 4, page 5 of Kapitola 14 sbírky pcODR.
3. Observe that by the (x, y) components stay close to $(0,0)$ for $u(t)=k t, k>0$ large, and for suitable $k>0$ attains the final condition exactly.

Show further that the infimum of $P[\cdot]$ is zero, which however cannot be attained.

