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1. VECTOR-VALUED FUNCTIONS

Notation. We consider u(t) : I — X, where I = [0,T] is time interval, X is Banach space with norm
[ullx, X* is dual of X, (2", z)y. y is the duality between 2* € X* and x € X. We usually omit the
subscripts.

1.1. Vector-valued integrable functions — Bochner integral

Definition. Function u(t) : I — X is called
1. simple, if u(t) = Zjvzl XA, (t)zj, where A; C I are (Lebesgue) measurable, and x; € X

2. measurable (strongly measurable), if there are u,(t) simple such that w,(t) — u(t) (strongly in
X) forae tel

3. weakly measurable, if the (scalar) function ¢t — (z*, u(t)) is (Lebesgue) measurable for any z* € X*
fixed

Remarks.
e (strongly) measurable = weakly measurable

e u(t) is simple <= wu(t) is measurable and u(I) C X finite

Theorem 1.1.* ! [Pettis] Function u(t) : I — X is measurable iff u(t) is weakly measurable and there
is N C I of measure zero such that u(I \ N) C X is separable (“essentially separably-valued”).

Corollaries. ) For X separable weak measurability implies measurability.
@ uy(t) measurable, u,(t) — u(t) a.e. = u(t) measurable
@ Continuity implies measurability.

Definition. Function u(t) : I — X is called (Bochner) integrable, provided there exist w,(t) simple
such that [} [Ju(t) — un(t)||x dt — 0 for n — co. The (Bochner) integral of u(t) : I — X is defined as
follows:

Lo fru( jv 1 2jA(A;j), if u(t) is simple

2. [;u(t)dt =limy, o0 [; un(t)dt, if u(t) is (Bochner) integrable

Remark. One has to check these definitions is correct (i.e. independent of x;, A; in the first part, and
of uy(t) in the second part)
One also proves that || [, u(t) dt||y < [;||u(t)] x dt for any u(t) integrable.

Theorem 1.2.* [Bochner] Function u(t) : I — X is Bochner integrable iff u(¢) is measurable and
Jr lu(t) || dt < oo.

!Theorems marked with + were not proven in this class.



Theorem 1.3.* [Lebesgue| Let u,(t) : I — X be measurable, u,(t) — wu(t) for a.e. t € I, and let
there exist g(t) : I — R integrable such that ||u,(t)]] < g(t) for a.e. t and all n. Then u(t) is Bochner
integrable and [} un(t) dt — [, u(t)dt; in fact one even has [} [Ju,(t) — u(t)|| dt — 0, n — oc.

Recall. For a scalar z(t) : I — R we say that ¢ is a Lebesgue point, if limj_,q 5 ffh |x(t+s)—x(t)| ds = 0.
Lebesgue’s theorem: if x(t) : I — R is (locally) integrable, then a.e. t € I is a Lebesgue point.

Definition. We say that ¢ € I is a Lebesgue point of a function w(t) : I — X, provided that
limy, o o5 [ lu(t + 5) = u(t)]|x ds = 0.

Theorem 1.4. [Lebesgue] If u(t) : I — X is Bochner integrable, then a.e. tg € I is a Lebesgue point.
Remarks. Let u(t) : I — X be Bochner integrable.

e Fix tg € I and set U(t ft s)ds. Then U’(t) = u(t) in each Lebesgue point of wu(t), in
particular a.e. in I.

e Let 9g(t) : R — R be convolution kernel, i.e. a bounded measurable function supported in [—1,1]
such that f_ll ¥(s)ds =1 (and possibly with additional regularity and symmetries).

Define vy, (t) = nyg(nt), and u* ¢y (t) = [pu(t — s)ibu(s) ds. (Note that this only makes sense for
t € [1/n,T — 1/n], or one has to define u(t) outside of I e.g. by zero).

Then u * 9, (t) — u(t) at each Lebesgue point of u(t), in particular a.e. in I.
Definition. For p € [1,00) we set
LP(I; X) = {u(t) : I — X; u(t) is measurable and / () |5 dt < oo }
I

For p = oo we set
L>®(I,X) = {u(t) : I — X; u(t) is measurable and t — |lu(t)||x is essentially bounded}

Essential boundedness means: there is ¢ > 0 such that ||u(t)||y < ¢ pro a.e. t € 1.

Remarks. These are Banach spaces — with the usual norm, and the convention that w(t), v(t) are
considered identical whenever u(t) = v(t) a.e. This is proved just as in the scalar case.
If X is a Hilbert space with scalar product (-,-)x, then L?(I; X) is Hilbert space with scalar product

Jr(u ))x dt.
Note that L1 (I; X) is just the space of integrable functions, and LP(I; X) C L4(I; X) if p > ¢ thanks to
the boundedness of I.

Lemma 1.1. [Approximation and density.] Let p € [1,00). Then:
1. Simple functions are dense in LP([; X).
2. Functions of the from u(t) = Z;V:1 @;(t)xj, where ¢;(t) € C(I;R), are dense in LP(1; X).
3. If the space Y is dense in X, then the space C2°(I;Y) is dense in LP(I; X).
4. Let v, (t) be a sequence of regularizing kernels, and let u(t) be extended by 0 outside of I. Then
w* Y (t) = u(t) in LP(I; X), for n — oo.

Remarks. It follows that if X is separable, then also LP(I; X) is separable for p < oo. But none of
these holds for p = co. We will talk on these spaces (duality, geometry) a little bit later.



1.2. AC functions and weak time derivative

Recall. Function z(t) : I — R is called absolutely continuous, provided that for any ¢ > 0 there exists
6 > 0 such that for any disjoint, finite collection of intervals (ay,8;) C I, if 30 ;(8; — o) < & then
> |x(By) = a(ay)| <e.

Proposition 1: If z(t) € AC(I;R), then z'(t) exists finite a.e. in I, 2/(t) € L*(I;R) and z(t3) — x(t1) =
fttf z'(s) ds for any t1, to € I.

Proposition 2: Let g(t) € L'(I;R). Fix ¢ty € I and set x(t ft s)ds for t € I. Then z(t) is AC and
2/ (t) = g(t) a.e. in 1.

We want to generalize this to vector-valued case. In fact Proposition 2 follows quite easily from the
above (cf. Remark after Theorem 1.4). Proposition 1 is generalized in Theorem 1.5 below.

Definition. Function u(t) : I — X, is called absolutely continuous, writing u(t) € AC(I; X), provided
that for any € > 0 there exists 6 > 0 such that for any disjoint, finite collection of intervals («a;, 3;) C I,
if 32,85 — aj) <0 then 3, [[u(B;) — z(oy)| x <e.

Theorem 1.5. Let u(t) : I — X be absolutely continuous, let X be reflexive and separable space. Then
W (t) (strong derivative) exists for a.e. t € I. Moreover, u/(t) is (Bochner) integrable and u(ta) — u(t1) =
fttf u'(s)ds for any ty, to € I.

Notation. Let D(I) = C°(I;R) be the space of test functions, i.e. infinitely smooth functions with
support strictly inside of I.

Lemma 1.2. Let u(t) € L*(I; X).
L If [;u(t)p(t) dt = 0 for all ¢(t) € D(I), then u(t) =0 a.e. in I.
I [ u(t)y! (t) dt = 0 for all ¢(t) € D(I), then there is zg € X such that u(t) =z a.e. in I.

Lemma 1.3. Let u(t), g(t) € L'(I; X). Then the following are equivalent:

1. There exist g € X such that u(t) = xg + fo s)ds for a.e. t € I.
2. [;u(t)¢ (t)dt = — [, g(t)p(t) dt for all p(t) € D(I).

3. 4 (z* u(t)) = (z*, g(t)) in the sense of distributions on (0,7), for every 2* € X* fixed.

Definition. Let u(t), g(t) € L'(I; X). We say that g(t) is a weak derivative of u(t), if one (hence all)
of the assertions of Lemma 1.3 hold. We write %u(t) = g(t). We further define the space

WL X) = {u(t) € LP(I; X); —u(t) € LP(I; X)}

d
dt
Remarks. By Lemma 1.3 part 1, weakly differentiable functions are just AC functions; equivalently,
primitive functions to integrable functions (up to a modification a.e.).

In applications we often have u(t) € LP(I;Y) with $u(t) € L9(I;Z) with some spaces Y, Z. This
requires there is some space X such that Y C X, Z C X (often simply Y C Z = X), so that u(t) is
weakly differentiable as a function I — X, and moreover u(t), %u(t) have the above-mentioned higher
integrability.



1.3. Geometry and duality of LP(I; X) spaces

Recall. X is called reflexive, if the canonical embedding J : X — X™** is isometrically onto. The
sequence u, converges weakly to u in X, if (z*,u,) — (z*,u) for any z* € X* fixed. We denote weak
convergence by u, — u.

The key application (as far as the PDE theory goes) of these concepts is the Eberlein-Smulian theorem:
if X is reflexive, and u,, C X is a bounded sequence, then there is a subsequence u,, and u € X such
that 4, — wu.

Definition. Space X is called strictly convez, if [|z||, ||yl < 1 and = # y implies ||ZE|| < 1.
It is called uniformly convex, if for any € > 0 there is § > 0 such that ||z||, ||y|| < 1 and ||z —y|| > &
implies [|ZEY| < 1-6.

Theorem 1.6. Let X be uniformly convex, let x, — x, and let ||z,|| — ||z||. Then z, — z.

Remark. It is easy to verify that Hilbert space is uniformly convex, and it is elementary to prove
Theorem 1.6 if X is Hilbert. Uniformly convex spaces have a number of good properties (e.g. they are
always reflexive).

As a typical example, spaces LP({2) are uniformly convex for p € (1,00). An obvious generalization is

Theorem 1.7.* Let X be uniformly convex, let p € (1,00). Then LP(I; X) is uniformly convex.
Recall. We call p, p’ € [1,00] Holder conjugate, if % + 1% = 1. By Holder’s inequality we have

1
P
/|u )| ds < /|u P da /|v(x)|P’ do
Q

It follows that any v(z) € LV (Q) fixed defines an element F € (LP(Q))* by the formula F : u(-) —
Jo ul Conversely, for p € [1,00), any element of (LP(€2))* has such a representation, and in this

sense (LP(Q)) = L (Q).

Consequently, LP(Q) are reflexive if p € (1,00). But L'(Q2), L>=() are not reflexive, and (L>°(9))*
contains elements that cannot be represented by functions from L!(().

Once again, we have a vector-valued version of these results.

Theorem 1.8. [Holder’s inequality.] Let u(t) € LP(I; X), v(t) € LV (I; X*), where p, p' are Holder
conjugate. Then ¢ — (v(t),u(t)) is measurable and

[0 1= [1wcor)” (o)’

Theorem 1.9.* [Dual space to LP(I; X).] Let X be reflexive, separable and p € [1,00). Denote 2" =
LP(I; X). Then for any F € 2 there is v(t) € L (I, X*) such that

By = [ 0Oy dt Vult) € 2.

Moreover, v(t) is uniquely defined, and its norm in L? (I; X*) equals to the norm of F in 2°*.

Corollaries. If X is reflexive, separable, and p € (1,00), then LP(I; X) is also reflexive, separable. Any
sequence bounded in LP(I; X') has a weakly convergent subsequence.



1.4. More on weakly differentiable functions: extensions, approximation, embeddings
Lemma 1.4. Let u(t) : I — X be weakly differentiable.

1. If n(t) : I — R is Lipschitz, then u(t)n(t) : I — X is weakly differentiable, and %(u(t)n(t)) _
it (t)n(t) +u(t)n'(t) a.e. in I.

d
2. I (¢ ) D(I), then ux)(t) is smooth and moreover, (ux1) (t) = Lux1)(t) whenever t —supptp C
(0

Theorem 1.10. [Extension operator.] Let u(t) € LP(I;Y) with Su(t) € LI(I;Z), where I = [0,T).
Denote In = [-A,T + A] for some A > 0.
Then there is a function Eu(t) € LP(Ia;Y) with £ Eu(t) € LI(Ia;Z) such that Eu(t) = u(t) and

4 Bu(t) = Lu(t) ae. in I.

Remarks. It also follows from the proof that the norms of Eu, % 4 By are estimated by the corresponding
norms of u, dtu the mapping u ~ Eu is linear and we can also have Eu = 0 outside (say) /a2 by
multiplication of some cut-off function.

Theorem 1.11. [Smooth approximation.] Let u(t) € LP(I;Y) with $u(t) € L9(I; Z). Then there exist
functions u,(t) € CY(I;Y) such that uy,(t) — u(t) in LP(I;Y) and ul,(t) — Su(t) in LY(I; Z).

Notation. Symbol X — Y means embedding: X C Y and there is ¢ > 0 such that ||u|ly < cfjul|y for
all v € X. Symbol X << Y means compact embedding: X — Y and any sequence bounded in X has
a subsequence converging strongly in Y.

Definition. Let X be separable, reflexive, densely embedded into a Hilbert space H. By Gelfand triple
we mean X — H = H* — X*.

Note that X < H implies H* < X*. Thanks to identification of H with H* (via Riesz theorem), we
have also “embedding” ¢ : X — X* is defined by

(u,v) o x = (u,0)H u, veX

where (-, ) g is the scalar product in H. In this sense, duality (-, ) x.x+ can be seen as a generalization
of (.7 )H
Lemma 1.5. WYP(I; X) < C(I; X) in the sense of representative: for any u(t) € W1P(I; X) there is
u(t) € C(I; X) such that

HaHC(I;X) < CHUHWLp(I;X)
and u(t) = a(t) a.e. in 1.

Remark. It can be shown that even WHP(I; X) — C%(I; X), the space of a-Holder functions with
a=1-1/p. Also WH(I; X) = C%(I; X), the space of Lipschitz functions.

Theorem 1 12. [Continuous representative.] Let X — H = H* — X* be Gelfand triple, let u(t) €
LP(I; X), 4 su(t) € LP'(I; X*), where p, p/ are Holder conjugate. Then:

1. u(t) € C(I; H) in the sense of representative; more precisely, there is @(t) such that

- d
il < € (1O ) + 1500 )

and u(t) = u(t) a.e. in I.



2. function ¢ ||u(t)||%; is weakly differentiable with &|lu(t)||% = 2 (Lu(t),u(t)) ,.  a.e. In partic-
ular 7

()% = ()% +2/ 2 <%u(t),u(t)>X* . dt

t1

for any t1, to € I, where (t) is the continuous representative.

Remarks. In other words, there is an embedding (in the sense of representative)

{u(t) e LP(I; X), %u(t) e LP(I; X*)} — C(I; X)

In view of Theorem 1.9, note u(t) and %u(t) belong to mutually dual spaces.

Lemma 1.6. [Ehrling.| Let Y << X — Z. Then for any a > 0 there is C' > 0 such that

lullx <allully +Cllullz  VueY

Theorem 1.13. [Aubin-Lions lemma.] Let Y << X < Z, where Y, Z are reflexive, separable. Let p,
q € (1,00). Then for any sequence u,(t) bounded in LP(I;Y), with %un(t) bounded in Li(I; Z), there
is a subsequence converging strongly in LP(I; X).

Remark. In other words, under the above assumptions, there is a compact embedding

{u(t) e LP(I;Y), %u(t) e LI(I; Z)} s LP(I; X)

2. PARABOLIC 2ND ORDER EQUATION

In this chapter we will consider a nonlinear second order parabolic equation

Oru — diva(Vu) + f(u) = h(t, z) (t,x) e I xQ (P1)
u = ug t=0, x€Q (P2)
u=0 tel, xecdf) (P3)

Here u = u(t,z) is the unknown solution. The right-hand side h = h(¢,z) and initial condition ug in
(P2) are given data, and (P3) is the so-called Dirichlet boundary condition.

Assumptions. Throughout this chapter, we assume that:
(A0) © C R" is bounded regular (Lipschitz) boundary oS

(A1) a(€) : R™ — R” satisfies a(0) = 0 and for V&, & € R™

a(€1) — a(&2)] < arlér — & (2.1)
(a(&1) — a(&2)) - (&1 — &) > aplé — & (2.2)

(A2) f(2):R — R satisfies Vz1, 20 € R

|f(z1) = f(22)] < {l)|z1 — 22



Remark. Here — diva(Vu) is a nonlinear 2nd order elliptic operator. For a(§) = £ and f = 0 we have
a heat equation dyu — Au = h(t,x) as a special case.

Recall. The spaces W12(Q), Wol’z(Q) and W12 = (Wol’z)* are reflexive, separable; W12(Q) <
L?(9). Poincaré inequality:
2
lullp2ioy < ol Vull o) Vu € Wo*(Q)

implies that ||[Vul,. () 18 an equivalent norm in WO1 2(0).

Notation. We will write L2, W12 instead of L?(Q2), W2(Q), etc, and ||ul|, [ull; o will denote the
norms in these spaces. Symbol (-, -) is the scalar product in L?

<ﬁm=/}wwaww
Q

and (-,-) the duality of VVOL2 and W12,
We will work with the Gelfand triple W2 < L2 = (L2)* — W~12 and ¢ : Wy — W12 is the
corresponding embedding, i.e., (tu,v) = (u,v) for all u, v € W01’2.

Recall. Let h € W52, The function u € Wol 2 is called weak solution of

—diva(Vu) =h x €
u=20 x € 00

provided that
1,2
(a(Vu),Vv) = (h,v) Yv e W,

Expanding the left-hand side this means

/a(Vu(a:)) -Vo(z)dr = (h,v) Yo € Wol,z
Q

By the (nonlinear) Lax-Milgram theorem, there exists unique such solution w. It is convenient to intro-
duce the (nonlinear) operator A : WO1 2 5 W12, by the relation

(A(u),v) = (a(Vu), Vo)

Then the above problem is written simply as A(u) = h, with A : T/VO1 2 s W12 one-to-one continuous.

Assumption on the data. We will assume that the right-hand side of (P1) satisfies h(t) € L2(I; W~12)
and the initial condition ug € L.

Definition. Function u(t) € L?(I; Wol 2 is called weak solution to (P1), provided that

d

7 ((®),0) + (a(Vu(t)), Vo) + (f (u(t)), v) = (h(t),v)

in the sense of distributions on (0,7"), for any v € VVO1 2 fixed.

Remarks. Expanding the definition of weak derivative %, this means

—/w@m¢@ﬁ+/wwm»wwww+/mewwmﬁ=/m@wm@ﬁ

1 I I 1
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for any v € W01’2, ©(t) € D(I). Expanding further the definition of (-,-) yields

_ / u(t, 2)o(a)g (b) dide + / a(Vu(t)) - Vol@)p(t) dide + / Flult, 2)o(t, 2) dids / (h(t), v) dt

1
IxQ Ix9) IxQ

The definition makes sense: the integrals converge due to assumptions (A1), (A2).

Lemma 2.1. Let u(t) € L*(I; Wol’z) be a weak solution. Then

1. u(t) is weakly differentiable with

%u(t) + Au(t)) + f(u(t)) = h(t)

in particular %u(t) c LQ(I; W01,2).
2. u(t) € C(I; L?) in the sense of representative

3.t ||lu(t)|]3 is weakly differentiable, with

for a.e. t € 1.

Remark. We agree to always use the continuous representative. (Hence, ¢t — |lu(t)||3 is AC function.)
Now it makes sense to speak of the value u(t) for all ¢ € I, in particular, the initial condition u(0).

Lemma 2.2. [Gronwall lemma.] Let y(t), g(t) be nonnegative (scalar) functions, y(t) continuous and
g(t) integrable, such that

y(t) < K —i—/o g(s)y(s)ds Vtel

Then .
y(t) < K exp </ g(s) ds) Vtel
0

Theorem 2.1. Weak solution is unique.

Recall. Let 2" be a Banach space. Operator A : 27 — 27 is monotone, if (A(u) — A(v),u —v) s o >
0 for all u, v € 2. It is hemicontinuous, if the function ¢t — A(u + tv) is continuous (from R to 2™*)
for any u, v € 2 fixed.

Lemma 2.3. [Minty’s trick.] Let 2" be reflexive, let A : 2" — 2™ be monotone, hemicontinuous. Let
U, = uin 2, A(u,) = o in Z7*, and let moreover

lim sup (A(un), Un) gx o < (0, U) gu o

n—oo
Then A(u) = a, i.e. A(uy) = A(u).

Theorem 2.2. [Compactness of w.s.] Let u,(t) € L*(I; Wol’2) be weak solutions such that u,(0) — ug
in L2. Then there is a subsequence i, (t) converging weakly to some u(t) € L?(I; VVO1 2, where u(t) is
again a weak solution, and u(0) = uyg.



Recall. The Dirichlet laplacian eigenvalue problem

—Au = \u z €N
u=0 x € 0f)

has a sequence (wj, \;) € Wol 2 % (0,400) of eigenfunctions and eigenvalues such that 0 < A\; < Ag <

- < Aj = 400, and w; form a complete ON basis of L?, but also a complete OG basis of V[/01’27 where
the latter space is equipped with the scalar product ((u,v)) = [, Vu - Vo. The above problem in the
weak form can thus be written as

(u,v)) = A(u,v) Vv € W01’2

By P, we will denote a projection of L? onto the finite-dimensional space span{ws,...,w,}. Clearly
| Py]| = 1. But an important fact is that P, is also an ON projection w.r.t. VVOL2 with the above scalar
product ((+,-)), and ||P,]| = 1 also in this space.

Theorem 2.3. [Existence of w.s.] Let ug € L? and h(t) € L?>(I;W~12) be given. Then there exists
u(t) € L3(I; Wol’2) a weak solution to (P1)—(P3) such that u(0) = wo.

Lemma 2.4. [Chain rule for weak derivative.] Let ¢ : R — R be smooth function with ¢’ and 1"
bounded. Then:

1. Ifue WOLQ, then ¥ (u) € WOI’Q, with Vi(u) = ¢/(u)Vu in the weak sense. Moreover, the operator
u > (u) is continuous T/Vol’2 — Wy’

2. If u(t) € L*(I; W01’2) with %u(t) € L*(I;W=1%), then t — fl/) )) dx is weakly differentiable
with

8 [y = {4 <t>,w'<u<t>>>

Q
for a.e. t € 1.

Definition. If v € L? or W2, then v > 0 (resp. v < 0) means: v(z) > 0 (resp. v(x) < 0) for e T € Q.
If fe W12 then f > 0 (resp. f < 0) means: (f,v) > 0 (resp. {f,v) < 0) for all v € WO such that
v > 0.

Theorem 2.4. [Maximum principle for w.s.] Let u(t) be a weak solution. Let f(-) > 0, u(0) < 0 and
h(t) <0 for a.e. t € I. Then u(t) <0 for a.e. t € I.

Remarks. Minimum principle: if f(-) < 0, w(0) > 0 and h(t) > 0 for a.e. t € I, then u(t) > 0 for a.e.
t € I. Generalization: if u(0) < M and u < M on 09 (in the sense of traces), and f(-) > 0, h(t) <
then u(t) < M for a.e. t € I.

Recall. Regularity of the laplace equation: if u € WO1 2 is a weak solution to —Au = th, where h € L?
and we moreover have dQ € C?, then u € W?? and there holds |[ully 5 < cg|f|l5, where cg only depends
on ).

Theorem 2.5. [Strong solution.] Let u(t) € L?(I; WOI’Q) be a weak solution of the heat equation

u— Au+ f(u) = h(t, x)



and let ug € Wy%, h(t) € L2(I; L?) and 8Q € C2. Then
u(t) € L= (I, W) N LA(I; W%2)

d

—u(t) € L*(I; L?

Sult) € (1 I?)
Remarks. The equation now holds a.e. in I x Q. Note that u(t) € L?(I; W2?) and %u(t) € L*(I; L?)
implies (in fact is equivalent to) u(t,z) € WH2(I x Q).
Note also that even if u(0) € L? only, we have u(t) € VVO1 2 for a.e. t € I, hence the regularity of Theorem
2.5 holds at least locally, i.e. on [1,T] for arbitrary 7 > 0. This is a general principle: parabolic equations

regularize in time.
The regularity can be further improved — as far as the data permit.

3. HYPERBOLIC 2ND ORDER EQUATION

In this chapter we will consider a semilinear second order hyperbolic equation

Opu — Au+ auy + f(u) = h(t,x) (t,x) e I xQ (H1)
u = ug t=0, x€Q (H2)

0w = uy t=0, x€Q (H3)

u=0 tel, x €00 (H4)

Again, u = u(t,x) is the unknown solution. The right-hand side h = h(t,z) and initial conditions wuy,
w1 in (H2), (H3) are given. Dirichlet boundary condition is imposed in (H4).

Assumptions. We will assume that Q2 C R" is a bounded domain with Lipschitz boundary, f(z) : R —
R is globally Lipschitz, and a € R. Concerning the data, we assume h(t) € L%(I; L?), ug € VVol’2 and
Uy € L2
Definition. Function u(t) € L*(I; Wol’z) with Lu(t) € L®(I;L?) is called weak solution to (HL),
provided that

d? d
o2 (), 0) + (Vu(?), Vo) + a(Zu(t), v) + (f(u(t), v) = (h(t), v)

in the sense of distributions on (0,7"), for any v € VVO1 2 fixed.

Remarks. Expanding the definition, weak solution means that

/(u(t),w)go”(t) dt + /(Vu(t),Vw)go(t) dt + a/(%u(t),w)gp(t) dt

1 1 1

+ [ o d = [ @0

for any v € Wol’2, ©(t) € D(I). On the other hand, if define A : Wol’2 — W12 as (Au,v) = (Vu, Vo)
for v € VVO1 2 (so essentially A = —A weakly), then the weak formulation can be written more succintly

as
2

@Lu(t) + Au(t) + abiu(t) + of (u(t)) = th(t)

dt
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as equation in W12, Or equivalently, denoting v(t) = Lu(t)

%w(t) + Au(t) + cwo(t) + o f (ult)) = eh(t)

It can be shown that if u(f) is weak solution, then u(t) : I — I/Vol’2 and %u(t) : [ — L? are weakly
continuous (in the sense of representative). Hence the initial conditions (H2), (H3) are meaningful.

Theorem 3.1. Weak solution is unique.

Notation. The energy is defined
1/,.d
plul = 5 (155008 + 19ul}

Multiplying (H1) with J;u and integrating over €2, the first two terms give %E [u]; unfortunately, this
is not justified in the class of weak solutions. We however have the following:

Lemma 3.1. Let u(t) € L*(I;Wy?) with $u(t) € L*(I;L?) be such that Siu(t) + Au(t) = (H(t)
weakly in I, where H(t) € L?(I; L?). Then t — E[u(t)] is weakly differentiable and

d d
—FElu(t)] = (H(t), —ult
S Blu(t)] = (H(D), S ul®)
for a.e. t € 1.
Theorem 3.2. Let h(t) € L*(I;L?), ug € VVOL2 and u; € L? be given. Then there exists u(t) €
L®(I; Wy ) with Lu(t) € L(I; L?) a weak solution to (H1)-(H4) such that u(0) = ug, $u(0) = u; in
the sense of representatives.
Theorem 3.3. [Strong solution.] Let u(t) € L*(I; W01’2) with %u(t) € L°(I; L?) be a weak solution
to the wave equation

d? A d

Let the data satisfy h(t) € W2(I; L?), uy € Wy, ug € Wy'?, h(0) + Aug € L? and let 9Q be C2.
Then
0o/ 7. 2,2 d oo/ T. 1,2
u(t) € LX(LW>), —u(t) € L%(1; Wy )
d? )
@u(t) € L>(I; L?)

Remark. For parabolic equation, we have seen that any weak solution immediately becomes more
regular (i.e. strong) even if u(0) € L? only.
For the wave equation this cannot be true: note that if we reverse time, only the sign of « is changed.

Notation. For any weak solution u = u(t,z) we define

eft, ) = 5| St 0) + L Vult, )

S
—|—u
2 dt
Note that e(t,z) € L'(I x Q) at least, and is related to the energy via

Elu(t)] = /e(t,az) dx

Q
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We will also write B(zg,r) = {z € R"; |x —xo| < r}.

Theorem 3.4. [Wave principle.] Let u(t) be weak solution to the damped wave equation
2 d

p7r Au + o= 0

where o > 0. Let 29 € Q, 7 € I be such that B(zg,7) C Q. Then

/ e(t,z)dx < / e(0,z) dx

B(zo,7—t) B(zo,7)

for all t € [0, 7].

Remark. The above theorem uses a formula, which holds for any smooth e = e(t, z):

% / e(t,r)dr = / Oe(t, x) dx — / e(t,z)dS(x)
B(

B(xo,7—t) z0,7—1) OB(zo,7—t)

Corollary. [Finite speed of propagation.] Let u(t) be weak solution to damped wave equation; let
u(0) = 0, £u(0) =0 in some B(zo,7) C Q. Then u = 0 a.e. in the cone

{t,2); [x—zo] <7 —1t}

4. THEORY OF SEMIGROUPS
4.1. Homogeneous problem
Our first aim in this chapter is to develop a theory of abstract equations of the form

d
—r=A 4.1
= Az (4.1)

where z(t) : I — X and A : X — X is linear, but not necessarily bounded operator. In other words, we
will want to define ' in some generalized sense.

Notation. In this chapter X is a Banach space with norm ||-||, £(X) is the space of linear continuous
operators L : X — X with the usual norm. By unbounded operator we mean a couple (A4, D(A)), where
D(A) C X is a linear subspace and A : D(A) — X is linear (but not necessarily bounded) operator.

Definition. Function S(¢) : [0,00) — £(X) is called a semigroup of operators in X, if

(i) S(0) =1

(i) S(t)S(s) = S(t+s) forallt, s >0

If moreover

(iii) S(t)x — x as t — 0+ for any = € X fixed, we say that S(t) form a cy-semigroup in X.

Remarks. Replacing (iii) by a stronger condition (iii)’ S(t) — I in £(X) for ¢ — 0+, we obtain the
so-called uniformly continuous semigroup. In such a case one already has S(t) = e for some A € L(X).

Lemma 4.1. Let S(t) be a ¢p-semigroup in X. Then

1. dM > 1, w > 0 such that ”S(t)”g(x) < Me*! for all t > 0

12



2. the map t — S(t)x is continuous [0,00) — X for any x € X fixed
Definition. By a generator of semigroup S(¢) we mean an unbounded operator (A, D(A)), defined by
Az = lim —(S(h)z — z) for x € D(A)

where we set

1 o
D(A) = {z € X; hl_l}r(r)l+ E(S(h)ac — ) exists in X }

Remark. It is easy to verify that in the above definition D(A) C X is a linear subspace, and A :
D(A) — X is a linear operator.

Theorem 4.1. [Basic properties of generator.] Let S(t) be a cp-semigroup in X, let (A, D(A)) be its
generator. Then

1. z€D(A) = S(t)r € D(A) forallt >0
2. x € D(A) = AS(t)x = S(t)Azx = LS(t)z for any t > 0 (derivative at ¢ = 0 is only from the
right)
3. for any x € X and ¢ > 0, one has fg S(s)xds € D(A) and A(f(f S(s)zds) = S(t)z —
Remark. The above theorem says that D(A) is invariant w.r.t. S(¢), that A and S(t) commute on

D(A) and most importantly, if 29 € D(A), then x(t) = S(t)xo is a classical solution to (4.1) with initial
condition z(0) = xg.

Definition. We say that the unbounded operator (A, D(A)) is closed, if u, € D(A), u, — u and
Au,, — v imply u € D(A) and Au = v.

Remark. It can be shown that (A4, D(A)) is closed if and only if D(A) is complete (i.e. Banach) space
w.r.t. the norm ||u|| + ||Au||. In this situation A : D(A) — X is continuous.

Theorem 4.2. Let (A, D(A)) be a generator of some cg-semigroup in X. Then D(A) is dense in X and
(A,D(A)) is closed.

Lemma 4.2. [Unicity of semigroup.] Let S(t), S(t) be co-semigroups that have the same generator.

Then S(t) = S(t) for all ¢t > 0.
Definition. Let (A, D(A)) be an unbounded operator in X. We define

e the resolvent set p(A) ={A € C, \ — A:D(A) — X is one-to-one }
e the resolvent R(\,A) = (A — A)_1: X — D(A), defined if X € p(A)
e the spectrum o(A) = C\ p(A)

Remarks. The following are easy to show:

e if (A,D(A)) is closed, then R(\, A), once it is defined, must be already continuous, i.e. R(\, A) €
L(X); moreover p(A) C C is open, and the mapping A — R(\, A) is analytic C — L(X)
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e one has the resolvent indentity:

RN\, A) — R(p, A) = (u— N RN\, A)R(u, A), for any A, pn € p(A)

e one also has

ARN, A)x = AR\, A)x —z, x€X,
R\, A)Az = AR\, A)x —x, x € D(A);

in particular

AR(N,A) = R(N\A)A on D(A)

Lemma 4.3. Let (A, D(A)) be a generator of cy-semigroup S(¢) on X; and let HS(t)HE(X) < Me“* for
all ¢ > 0. Then for every A > w one has A € p(A), the resolvent can be computed as

RO\, A)g = / MG (t)a dt
0

and moreover, ||R(X, A)[|zy) < 2L

Remark. If S(t) is a cp-semigroup with generator (A4, D(A)), then ~5*(t) = e “!S(t) is a cp-semigroup

with generator A = A —wl, and D(A) = D(A). Clearly also A € p(A) if and only if A +w € p(A4), and
R(MA)=RA+w,A).

Definition. We call S(t) a contraction co-semigroup, provided that ||S(t)||£(X) <1 forall t >0.

Theorem 4.3. [Hille-Yosida.] Let (A, D(A)) be an unbounded operator on X. Then the following are
equivalent:

1. there exists a co-semigroup S(t) of contractions on X such that (A, D(A)) is its generator

2. (A,D(A)) is closed, D(A) is dense in X and for every A > 0 one has A € p(A), ||R()\,A)HL.(X) <3

Remarks. The proof 2 — 1 uses the so-called Yosida approximation A,r — Az, where A, =
n?R(n, A) — nI are bounded. Other possible ,,exponential formula“ reads

S(t)z = lim <I - %> .

n—o0 n

where (I — %)_1 = ZR(%,A). Cf. the well-known formula e® = lim,, (1 — a/n)™".
A general version of Hille-Yosida theorem says: (A, D(A)) is a generator of co-semigroup satisfying

”S(t)”L(X) < M| if and only if (4,D(A)) is closed, D(A) is dense in X and for every A > w one has
A € p(A) and ”R()‘»A)”g(x) < %
A somewhat related is the Lumer-Phillips theorem: (A, D(A)) is a generator of cyp-semigroup of contrac-

tions, if and only if it is closed, densely defined, and for every A > 0 one has |[Az — Az||y > Az,
x € D(A) and moreover, A\ogI — A : D(A) — X is onto for some Ag > 0.
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4.2. Nonhomogeneous problem

We will now consider a general (nonhomogeneous) Cauchy problem

d

Zu=Autf@),  w0)=u (4.2)

where ug € X and f(t) : I — X are given, I = [0,7]. We will assume that (A, D(A)) is an unbounded
operator, which generates a cp-semigroup S(t), and that f(t) € L1(I; X) at least.

Definition. Function u(t) is called classical solution to (4.2), if u(t) € C*(I; X)NC(I; D(A)), and (4.2)
holds for every t € I.

Function u(t) is called strong solution to (4.2), provided that u(t) € W1(I; X)N LY (I;D(A)) and (4.2)
holds for a.e. t € I.

Remarks. Classical implies strong, and strong (in view of Lemma 1.3) is equivalent to

u(t) = ug —i—/o Au(s) + f(s)ds

for a.e. t € I, where the right-hand side is the absolutely continuous representative of u(t).

Note that u(t) € C(I;D(A)) (where D(A) is considered with the graph norm) is equivalent to: u(t) €
C(I; X), u(t) € D(A) for every t € I and moreover, t — Au(t) is continuous I — X.

Analogous assertion is concerning integrability is:

Lemma 4.4. [Hille’s theorem.] Let (4, D(A)) be closed operator. Then u(t) € L*(I;D(A)) if and only
if u(t) € LY(I; X), u(t) € D(A) for a.e. t € I and Au(t) € L(I; X).
In this situation one also has [, u(t) dt € D(A) and

A < /] u(®) dt) _ /1 Aut) dt

Definition. Function u(t) : I — X is called mild solution to (4.2), provided that

u(t) = S(t)uo + /Ot S(t—s)f(s)ds, tel

Remarks. Recalling that S(t) is a semigroup generated by A, hence ,,S(t) = el4« the definition is
motivated by the ,,variation of constants“ formula. The integral is finite in fact, u(t) € C(I; X), see
lemma below.

Note that trivially, one has existence and uniqueness of mild solution.

Lemma 4.5. [Abstract convolution.] Let S(t) be a cp-semigroup on X, let v(¢ fo (t —s)f(s)ds,
t € I. Then

L. f(t) e LMI; X) = v(t) € C([; X)
2. f(t) € CONI; X) = v(t) € CON(I; X)
3. f(t) e CHI; X) = v(t) € C(I; X), and V'(t) = +f0 (t—s)f'(s)ds, t € X.
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Lemma 4.6. Function u(t) is mild solution to (4.2), if and only if u(t) € C(I; X), for every t € I one
has fo s)ds € D(A) and

u()—uo+A</ ) /f Vtel

Corollary. Strong solution is also mild. Classical and strong solutions, whenever they exist, are unique.

Remark. Mild solution, in general, is not strong: assume that = € X is such that S(t)x ¢ D(A) for any
t > 0. Then u(t) = tS(t)x is mild solution of (4.2) with f(t) = S(¢)z, up = 0, but u(t) € D(A) for any
t>0.

However, every mild solution is a uniform limit of classical solutions. For h > 0, we set wu(t) =

1/h [, t+h s)ds and verify (with help of Lemma 4.6.) that up(t) is classical solution of (4.2) with
initial CODdlthD up(0) € D(A), and right-hand side f,(t). Clearly uy(t) = u(t) thanks to properties of
convolution.

Theorem 4.4. [Regularity of mild solution.]
1. Let up € D(A) and f(t) € C'(I; X). Then mild solution is classical.

2. Let up € D(A) and f(t) € C%(I; X); let moreover X be reflexive. Then mild solution is strong.
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