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1. Vector-valued functions

Notation. We consider u(t) : I → X, where I = [0, T ] is time interval, X is Banach space with norm
‖u‖X , X∗ is dual of X, 〈x∗, x〉X∗,X is the duality between x∗ ∈ X∗ and x ∈ X. We usually omit the
subscripts.

1.1. Vector-valued integrable functions – Bochner integral

Definition. Function u(t) : I → X is called

1. simple, if u(t) =
∑N

j=1 χAj
(t)xj , where Aj ⊂ I are (Lebesgue) measurable, and xj ∈ X

2. measurable (strongly measurable), if there are un(t) simple such that un(t) → u(t) (strongly in
X) for a.e. t ∈ I

3. weakly measurable, if the (scalar) function t 7→ 〈x∗, u(t)〉 is (Lebesgue) measurable for any x∗ ∈ X∗

fixed

Remarks.

• (strongly) measurable =⇒ weakly measurable

• u(t) is simple ⇐⇒ u(t) is measurable and u(I) ⊂ X finite

Theorem 1.1.⋆ 1 [Pettis] Function u(t) : I → X is measurable iff u(t) is weakly measurable and there
is N ⊂ I of measure zero such that u(I \N) ⊂ X is separable (“essentially separably-valued”).

Corollaries. 1© For X separable weak measurability implies measurability.
2© un(t) measurable, un(t) → u(t) a.e. =⇒ u(t) measurable
3© Continuity implies measurability.

Definition. Function u(t) : I → X is called (Bochner) integrable, provided there exist un(t) simple
such that

∫

I ‖u(t)− un(t)‖X dt → 0 for n → ∞. The (Bochner) integral of u(t) : I → X is defined as
follows:

1.
∫

I u(t) dt =
∑N

j=1 xjλ(Aj), if u(t) is simple

2.
∫

I u(t) dt = limn→∞

∫

I un(t) dt, if u(t) is (Bochner) integrable

Remark. One has to check these definitions is correct (i.e. independent of xj, Aj in the first part, and
of un(t) in the second part).
One also proves that ‖

∫

I u(t) dt‖X ≤
∫

I ‖u(t)‖X dt for any u(t) integrable.

Theorem 1.2.⋆ [Bochner] Function u(t) : I → X is Bochner integrable iff u(t) is measurable and
∫

I ‖u(t)‖X dt <∞.

1Theorems marked with ⋆ were not proven in this class.
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Theorem 1.3.⋆ [Lebesgue] Let un(t) : I → X be measurable, un(t) → u(t) for a.e. t ∈ I, and let
there exist g(t) : I → R integrable such that ‖un(t)‖ ≤ g(t) for a.e. t and all n. Then u(t) is Bochner
integrable and

∫

I un(t) dt →
∫

I u(t) dt; in fact one even has
∫

I ‖un(t)− u(t)‖ dt → 0, n→ ∞.

Recall. For a scalar x(t) : I → R we say that t is a Lebesgue point, if limh→0
1
2h

∫ h
−h |x(t+s)−x(t)| ds = 0.

Lebesgue’s theorem: if x(t) : I → R is (locally) integrable, then a.e. t ∈ I is a Lebesgue point.

Definition. We say that t ∈ I is a Lebesgue point of a function u(t) : I → X, provided that

limh→0
1
2h

∫ h
−h ‖u(t+ s)− u(t)‖X ds = 0.

Theorem 1.4. [Lebesgue] If u(t) : I → X is Bochner integrable, then a.e. t0 ∈ I is a Lebesgue point.

Remarks. Let u(t) : I → X be Bochner integrable.

• Fix t0 ∈ I and set U(t) =
∫ t
t0
u(s) ds. Then U ′(t) = u(t) in each Lebesgue point of u(t), in

particular a.e. in I.

• Let ψ0(t) : R → R be convolution kernel, i.e. a bounded measurable function supported in [−1, 1]
such that

∫ 1
−1 ψ(s) ds = 1 (and possibly with additional regularity and symmetries).

Define ψn(t) = nψ0(nt), and u ∗ ψn(t) =
∫

R
u(t− s)ψn(s) ds. (Note that this only makes sense for

t ∈ [1/n, T − 1/n], or one has to define u(t) outside of I e.g. by zero).

Then u ∗ ψn(t) → u(t) at each Lebesgue point of u(t), in particular a.e. in I.

Definition. For p ∈ [1,∞) we set

Lp(I;X) =
{

u(t) : I → X; u(t) is measurable and

∫

I
‖u(t)‖pX dt <∞

}

For p = ∞ we set

L∞(I,X) =
{

u(t) : I → X; u(t) is measurable and t 7→ ‖u(t)‖X is essentially bounded
}

Essential boundedness means: there is c > 0 such that ‖u(t)‖X ≤ c pro a.e. t ∈ I.

Remarks. These are Banach spaces – with the usual norm, and the convention that u(t), v(t) are
considered identical whenever u(t) = v(t) a.e. This is proved just as in the scalar case.
If X is a Hilbert space with scalar product (·, ·)X , then L2(I;X) is Hilbert space with scalar product
∫

I(u(t), v(t))X dt.
Note that L1(I;X) is just the space of integrable functions, and Lp(I;X) ⊂ Lq(I;X) if p ≥ q thanks to
the boundedness of I.

Lemma 1.1. [Approximation and density.] Let p ∈ [1,∞). Then:

1. Simple functions are dense in Lp(I;X).

2. Functions of the from u(t) =
∑N

j=1 ϕj(t)xj , where ϕj(t) ∈ C∞
c (I;R), are dense in Lp(I;X).

3. If the space Y is dense in X, then the space C∞
c (I;Y ) is dense in Lp(I;X).

4. Let ψn(t) be a sequence of regularizing kernels, and let u(t) be extended by 0 outside of I. Then
u ∗ ψn(t) → u(t) in Lp(I;X), for n→ ∞.

Remarks. It follows that if X is separable, then also Lp(I;X) is separable for p < ∞. But none of
these holds for p = ∞. We will talk on these spaces (duality, geometry) a little bit later.
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1.2. AC functions and weak time derivative

Recall. Function x(t) : I → R is called absolutely continuous, provided that for any ε > 0 there exists
δ > 0 such that for any disjoint, finite collection of intervals (αj , βj) ⊂ I, if

∑

j(βj − αj) < δ then
∑

j |x(βj)− x(αj)| < ε.

Proposition 1: If x(t) ∈ AC(I;R), then x′(t) exists finite a.e. in I, x′(t) ∈ L1(I;R) and x(t2)− x(t1) =
∫ t2
t1
x′(s) ds for any t1, t2 ∈ I.

Proposition 2: Let g(t) ∈ L1(I;R). Fix t0 ∈ I and set x(t) =
∫ t
t0
g(s) ds for t ∈ I. Then x(t) is AC and

x′(t) = g(t) a.e. in I.
We want to generalize this to vector-valued case. In fact Proposition 2 follows quite easily from the
above (cf. Remark after Theorem 1.4). Proposition 1 is generalized in Theorem 1.5 below.

Definition. Function u(t) : I → X, is called absolutely continuous, writing u(t) ∈ AC(I;X), provided
that for any ε > 0 there exists δ > 0 such that for any disjoint, finite collection of intervals (αj , βj) ⊂ I,
if
∑

j(βj − αj) < δ then
∑

j ‖u(βj)− x(αj)‖X < ε.

Theorem 1.5. Let u(t) : I → X be absolutely continuous, let X be reflexive and separable space. Then
u′(t) (strong derivative) exists for a.e. t ∈ I. Moreover, u′(t) is (Bochner) integrable and u(t2)−u(t1) =
∫ t2
t1
u′(s) ds for any t1, t2 ∈ I.

Notation. Let D(I) = C∞
c (I;R) be the space of test functions, i.e. infinitely smooth functions with

support strictly inside of I.

Lemma 1.2. Let u(t) ∈ L1(I;X).

1. If
∫

I u(t)ϕ(t) dt = 0 for all ϕ(t) ∈ D(I), then u(t) = 0 a.e. in I.

2. If
∫

I u(t)ϕ
′(t) dt = 0 for all ϕ(t) ∈ D(I), then there is x0 ∈ X such that u(t) = x0 a.e. in I.

Lemma 1.3. Let u(t), g(t) ∈ L1(I;X). Then the following are equivalent:

1. There exist x0 ∈ X such that u(t) = x0 +
∫ t
0 g(s) ds for a.e. t ∈ I.

2.
∫

I u(t)ϕ
′(t) dt = −

∫

I g(t)ϕ(t) dt for all ϕ(t) ∈ D(I).

3. d
dt 〈x

∗, u(t)〉 = 〈x∗, g(t)〉 in the sense of distributions on (0, T ), for every x∗ ∈ X∗ fixed.

Definition. Let u(t), g(t) ∈ L1(I;X). We say that g(t) is a weak derivative of u(t), if one (hence all)
of the assertions of Lemma 1.3 hold. We write d

dtu(t) = g(t). We further define the space

W 1,p(I;X) =
{

u(t) ∈ Lp(I;X);
d

dt
u(t) ∈ Lp(I;X)

}

Remarks. By Lemma 1.3 part 1, weakly differentiable functions are just AC functions; equivalently,
primitive functions to integrable functions (up to a modification a.e.).
In applications we often have u(t) ∈ Lp(I;Y ) with d

dtu(t) ∈ Lq(I;Z) with some spaces Y , Z. This
requires there is some space X such that Y ⊂ X, Z ⊂ X (often simply Y ⊂ Z = X), so that u(t) is
weakly differentiable as a function I → X, and moreover u(t), d

dtu(t) have the above-mentioned higher
integrability.
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1.3. Geometry and duality of Lp(I;X) spaces

Recall. X is called reflexive, if the canonical embedding J : X → X∗∗ is isometrically onto. The
sequence un converges weakly to u in X, if 〈x∗, un〉 → 〈x∗, u〉 for any x∗ ∈ X∗ fixed. We denote weak
convergence by un ⇀ u.
The key application (as far as the PDE theory goes) of these concepts is the Eberlein-Šmulian theorem:
if X is reflexive, and un ⊂ X is a bounded sequence, then there is a subsequence ũn and u ∈ X such
that ũn ⇀ u.

Definition. Space X is called strictly convex, if ‖x‖, ‖y‖ ≤ 1 and x 6= y implies ‖x+y
2 ‖ < 1.

It is called uniformly convex, if for any ε > 0 there is δ > 0 such that ‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε
implies ‖x+y

2 ‖ ≤ 1− δ.

Theorem 1.6. Let X be uniformly convex, let xn ⇀ x, and let ‖xn‖ → ‖x‖. Then xn → x.

Remark. It is easy to verify that Hilbert space is uniformly convex, and it is elementary to prove
Theorem 1.6 if X is Hilbert. Uniformly convex spaces have a number of good properties (e.g. they are
always reflexive).
As a typical example, spaces Lp(Ω) are uniformly convex for p ∈ (1,∞). An obvious generalization is

Theorem 1.7.⋆ Let X be uniformly convex, let p ∈ (1,∞). Then Lp(I;X) is uniformly convex.

Recall. We call p, p′ ∈ [1,∞] Hölder conjugate, if 1
p + 1

p′ = 1. By Hölder’s inequality we have

∫

Ω

|u(x)v(x)| dx ≤





∫

Ω

|u(x)|p dx





1

p




∫

Ω

|v(x)|p
′

dx





1

p′

It follows that any v(x) ∈ Lp′(Ω) fixed defines an element F ∈ (Lp(Ω))∗ by the formula F : u(·) 7→
∫

Ω u(x)v(x). Conversely, for p ∈ [1,∞), any element of (Lp(Ω))∗ has such a representation, and in this

sense (Lp(Ω))∗ = Lp′(Ω).
Consequently, Lp(Ω) are reflexive if p ∈ (1,∞). But L1(Ω), L∞(Ω) are not reflexive, and (L∞(Ω))∗

contains elements that cannot be represented by functions from L1(Ω).
Once again, we have a vector-valued version of these results.

Theorem 1.8. [Hölder’s inequality.] Let u(t) ∈ Lp(I;X), v(t) ∈ Lp′(I;X∗), where p, p′ are Hölder
conjugate. Then t 7→ 〈v(t), u(t)〉 is measurable and

∫

I
| 〈v(t), u(t)〉 | ≤

(
∫

I
‖u(t)‖pXdt

) 1

p
(
∫

I
‖v(t)‖p

′

X∗dt

) 1

p′

Theorem 1.9.⋆ [Dual space to Lp(I;X).] Let X be reflexive, separable and p ∈ [1,∞). Denote X =
Lp(I;X). Then for any F ∈ X ∗ there is v(t) ∈ Lp′(I,X∗) such that

〈F, u(·)〉
X ∗,X =

∫

I
〈v(t), u(t)〉X∗,X dt ∀u(t) ∈ X .

Moreover, v(t) is uniquely defined, and its norm in Lp′(I;X∗) equals to the norm of F in X ∗.

Corollaries. If X is reflexive, separable, and p ∈ (1,∞), then Lp(I;X) is also reflexive, separable. Any
sequence bounded in Lp(I;X) has a weakly convergent subsequence.
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1.4. More on weakly differentiable functions: extensions, approximation, embeddings

Lemma 1.4. Let u(t) : I → X be weakly differentiable.

1. If η(t) : I → R is Lipschitz, then u(t)η(t) : I → X is weakly differentiable, and d
dt

(

u(t)η(t)
)

=
d
dtu(t)η(t) + u(t)η′(t) a.e. in I.

2. If ψ(t) ∈ D(I), then u∗ψ(t) is smooth and moreover, (u∗ψ)′(t) = d
dtu∗ψ(t) whenever t−suppψ ⊂

(0, T ).

Theorem 1.10. [Extension operator.] Let u(t) ∈ Lp(I;Y ) with d
dtu(t) ∈ Lq(I;Z), where I = [0, T ].

Denote I∆ = [−∆, T +∆] for some ∆ > 0.
Then there is a function Eu(t) ∈ Lp(I∆;Y ) with d

dtEu(t) ∈ Lq(I∆;Z) such that Eu(t) = u(t) and
d
dtEu(t) =

d
dtu(t) a.e. in I.

Remarks. It also follows from the proof that the norms of Eu, d
dtEu are estimated by the corresponding

norms of u, d
dtu, the mapping u 7→ Eu is linear and we can also have Eu = 0 outside (say) I∆/2 by

multiplication of some cut-off function.

Theorem 1.11. [Smooth approximation.] Let u(t) ∈ Lp(I;Y ) with d
dtu(t) ∈ Lq(I;Z). Then there exist

functions un(t) ∈ C1(I;Y ) such that un(t) → u(t) in Lp(I;Y ) and u′n(t) →
d
dtu(t) in L

q(I;Z).

Notation. Symbol X →֒ Y means embedding : X ⊂ Y and there is c > 0 such that ‖u‖Y ≤ c‖u‖X for
all u ∈ X. Symbol X →֒→֒ Y means compact embedding : X →֒ Y and any sequence bounded in X has
a subsequence converging strongly in Y .

Definition. Let X be separable, reflexive, densely embedded into a Hilbert space H. By Gelfand triple
we mean X →֒ H ∼= H∗ →֒ X∗.
Note that X →֒ H implies H∗ →֒ X∗. Thanks to identification of H with H∗ (via Riesz theorem), we
have also “embedding” ι : X → X∗ is defined by

〈ιu, v〉X∗,X = (u, v)H u, v ∈ X

where (·, ·)H is the scalar product in H. In this sense, duality 〈·, ·〉X,X∗ can be seen as a generalization
of (·, ·)H .

Lemma 1.5. W 1,p(I;X) →֒ C(I;X) in the sense of representative: for any u(t) ∈ W 1,p(I;X) there is
ũ(t) ∈ C(I;X) such that

‖ũ‖C(I;X) ≤ c‖u‖W 1,p(I;X)

and u(t) = ũ(t) a.e. in I.

Remark. It can be shown that even W 1,p(I;X) →֒ C0,α(I;X), the space of α-Hölder functions with
α = 1− 1/p. Also W 1,∞(I;X) = C0,1(I;X), the space of Lipschitz functions.

Theorem 1.12. [Continuous representative.] Let X →֒ H ∼= H∗ →֒ X∗ be Gelfand triple, let u(t) ∈
Lp(I;X), d

dtu(t) ∈ Lp′(I;X∗), where p, p′ are Hölder conjugate. Then:

1. u(t) ∈ C(I;H) in the sense of representative; more precisely, there is ũ(t) such that

‖ũ‖C(I;H) ≤ C

(

‖u(t)‖Lp(I;X) + ‖
d

dt
u(t)‖

Lp′ (I;X∗)

)

and u(t) = ũ(t) a.e. in I.
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2. function t 7→ ‖u(t)‖2H is weakly differentiable with d
dt‖u(t)‖

2
H = 2

〈

d
dtu(t), u(t)

〉

X∗,X
a.e. In partic-

ular

‖ũ(t2)‖
2
H = ‖ũ(t1)‖

2
H + 2

∫ t2

t1

〈

d

dt
u(t), u(t)

〉

X∗,X

dt

for any t1, t2 ∈ I, where ũ(t) is the continuous representative.

Remarks. In other words, there is an embedding (in the sense of representative)

{

u(t) ∈ Lp(I;X),
d

dt
u(t) ∈ Lp′(I;X∗)

}

→֒ C(I;X)

In view of Theorem 1.9, note u(t) and d
dtu(t) belong to mutually dual spaces.

Lemma 1.6. [Ehrling.] Let Y →֒→֒ X →֒ Z. Then for any a > 0 there is C > 0 such that

‖u‖X ≤ a‖u‖Y +C‖u‖Z ∀u ∈ Y

Theorem 1.13. [Aubin-Lions lemma.] Let Y →֒→֒ X →֒ Z, where Y , Z are reflexive, separable. Let p,
q ∈ (1,∞). Then for any sequence un(t) bounded in Lp(I;Y ), with d

dtun(t) bounded in Lq(I;Z), there
is a subsequence converging strongly in Lp(I;X).

Remark. In other words, under the above assumptions, there is a compact embedding

{

u(t) ∈ Lp(I;Y ),
d

dt
u(t) ∈ Lq(I;Z)

}

→֒→֒ Lp(I;X)

2. Parabolic 2nd order equation

In this chapter we will consider a nonlinear second order parabolic equation

∂tu− div a(∇u) + f(u) = h(t, x) (t, x) ∈ I × Ω (P1)

u = u0 t = 0, x ∈ Ω (P2)

u = 0 t ∈ I, x ∈ ∂Ω (P3)

Here u = u(t, x) is the unknown solution. The right-hand side h = h(t, x) and initial condition u0 in
(P2) are given data, and (P3) is the so-called Dirichlet boundary condition.

Assumptions. Throughout this chapter, we assume that:

(A0) Ω ⊂ R
n is bounded regular (Lipschitz) boundary ∂Ω

(A1) a(ξ) : Rn → R
n satisfies a(0) = 0 and for ∀ξ1, ξ2 ∈ R

n

|a(ξ1)− a(ξ2)| ≤ α1|ξ1 − ξ2| (2.1)
(

a(ξ1)− a(ξ2)
)

·
(

ξ1 − ξ2) ≥ α0|ξ1 − ξ2|
2 (2.2)

(A2) f(z) : R → R satisfies ∀z1, z2 ∈ R

|f(z1)− f(z2)| ≤ ℓ|z1 − z2|
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Remark. Here − div a(∇u) is a nonlinear 2nd order elliptic operator. For a(ξ) = ξ and f ≡ 0 we have
a heat equation ∂tu−∆u = h(t, x) as a special case.

Recall. The spaces W 1,2(Ω), W 1,2
0 (Ω) and W−1,2 = (W 1,2

0 )∗ are reflexive, separable; W 1,2(Ω) →֒→֒
L2(Ω). Poincaré inequality:

‖u‖L2(Ω) ≤ cp‖∇u‖L2(Ω) ∀u ∈W 1,2
0 (Ω)

implies that ‖∇u‖L2(Ω) is an equivalent norm in W 1,2
0 (Ω).

Notation. We will write L2, W 1,2 instead of L2(Ω), W 1,2(Ω), etc, and ‖u‖2, ‖u‖1,2 will denote the

norms in these spaces. Symbol (·, ·) is the scalar product in L2

(f, g) =

∫

Ω

f(x) · g(x) dx

and 〈·, ·〉 the duality of W 1,2
0 and W−1,2.

We will work with the Gelfand triple W 1,2
0 →֒ L2 ∼= (L2)∗ →֒ W−1,2, and ι : W 1,2

0 → W−1,2 is the

corresponding embedding, i.e., 〈ιu, v〉 = (u, v) for all u, v ∈W 1,2
0 .

Recall. Let h ∈W−1,2. The function u ∈W 1,2
0 is called weak solution of

− div a(∇u) = h x ∈ Ω

u = 0 x ∈ ∂Ω

provided that
(a(∇u),∇v) = 〈h, v〉 ∀v ∈W 1,2

0

Expanding the left-hand side this means
∫

Ω

a(∇u(x)) · ∇v(x) dx = 〈h, v〉 ∀v ∈W 1,2
0

By the (nonlinear) Lax-Milgram theorem, there exists unique such solution u. It is convenient to intro-
duce the (nonlinear) operator A : W 1,2

0 →W−1,2, by the relation

〈A(u), v〉 = (a(∇u),∇v)

Then the above problem is written simply as A(u) = h, with A :W 1,2
0 → W−1,2 one-to-one continuous.

Assumption on the data.We will assume that the right-hand side of (P1) satisfies h(t) ∈ L2(I;W−1,2)
and the initial condition u0 ∈ L2.

Definition. Function u(t) ∈ L2(I;W 1,2
0 ) is called weak solution to (P1), provided that

d

dt
(u(t), v) + (a(∇u(t)),∇v) + (f(u(t)), v) = 〈h(t), v〉

in the sense of distributions on (0, T ), for any v ∈W 1,2
0 fixed.

Remarks. Expanding the definition of weak derivative d
dt , this means

−

∫

I
(u(t), v)ϕ′(t) dt+

∫

I
(a(∇u(t)),∇v)ϕ(t) dt +

∫

I
(f(u(t)), v)ϕ(t) dt =

∫

I
〈h(t), v〉ϕ(t) dt
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for any v ∈W 1,2
0 , ϕ(t) ∈ D(I). Expanding further the definition of (·, ·) yields

−

∫

I×Ω

u(t, x)v(x)ϕ′(t) dtdx+

∫

I×Ω

a(∇u(t)) · ∇v(x)ϕ(t) dtdx+

∫

I×Ω

f(u(t, x))v(t, x) dtdx =

∫

I
〈h(t), v〉 dt

The definition makes sense: the integrals converge due to assumptions (A1), (A2).

Lemma 2.1. Let u(t) ∈ L2(I;W 1,2
0 ) be a weak solution. Then

1. u(t) is weakly differentiable with

d

dt
u(t) +A(u(t)) + f(u(t)) = h(t)

in particular d
dtu(t) ∈ L

2(I;W 1,2
0 ).

2. u(t) ∈ C(I;L2) in the sense of representative

3. t 7→ ‖u(t)‖22 is weakly differentiable, with

1

2

d

dt
‖u(t)‖22 + 〈A(u(t)), u(t)〉 + (f(u(t)), u(t)) = 〈h(t), u(t)〉

for a.e. t ∈ I.

Remark. We agree to always use the continuous representative. (Hence, t 7→ ‖u(t)‖22 is AC function.)
Now it makes sense to speak of the value u(t) for all t ∈ I, in particular, the initial condition u(0).

Lemma 2.2. [Gronwall lemma.] Let y(t), g(t) be nonnegative (scalar) functions, y(t) continuous and
g(t) integrable, such that

y(t) ≤ K +

∫ t

0
g(s)y(s) ds ∀t ∈ I

Then

y(t) ≤ K exp

(∫ t

0
g(s) ds

)

∀t ∈ I

Theorem 2.1. Weak solution is unique.

Recall. Let X be a Banach space. Operator A : X → X ∗ is monotone, if 〈A(u)−A(v), u − v〉
X ∗,X ≥

0 for all u, v ∈ X . It is hemicontinuous, if the function t 7→ A(u + tv) is continuous (from R to X ∗)
for any u, v ∈ X fixed.

Lemma 2.3. [Minty’s trick.] Let X be reflexive, let A : X → X ∗ be monotone, hemicontinuous. Let
un ⇀ u in X , A(un)⇀ α in X ∗, and let moreover

lim sup
n→∞

〈A(un), un〉X ∗,X ≤ 〈α, u〉
X ∗,X

Then A(u) = α, i.e. A(un)⇀ A(u).

Theorem 2.2. [Compactness of w.s.] Let un(t) ∈ L2(I;W 1,2
0 ) be weak solutions such that un(0) → u0

in L2. Then there is a subsequence ũn(t) converging weakly to some u(t) ∈ L2(I;W 1,2
0 ), where u(t) is

again a weak solution, and u(0) = u0.
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Recall. The Dirichlet laplacian eigenvalue problem

−∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω

has a sequence (wj , λj) ∈ W 1,2
0 × (0,+∞) of eigenfunctions and eigenvalues such that 0 < λ1 ≤ λ2 ≤

· · · ≤ λj → +∞, and wj form a complete ON basis of L2, but also a complete OG basis of W 1,2
0 , where

the latter space is equipped with the scalar product ((u, v)) =
∫

Ω∇u · ∇v. The above problem in the
weak form can thus be written as

((u, v)) = λ(u, v) ∀v ∈W 1,2
0

By Pn we will denote a projection of L2 onto the finite-dimensional space span{w1, . . . , wn}. Clearly
‖Pn‖ = 1. But an important fact is that Pn is also an ON projection w.r.t. W 1,2

0 with the above scalar
product ((·, ·)), and ‖Pn‖ = 1 also in this space.

Theorem 2.3. [Existence of w.s.] Let u0 ∈ L2 and h(t) ∈ L2(I;W−1,2) be given. Then there exists
u(t) ∈ L2(I;W 1,2

0 ) a weak solution to (P1)–(P3) such that u(0) = u0.

Lemma 2.4. [Chain rule for weak derivative.] Let ψ : R → R be smooth function with ψ′ and ψ′′

bounded. Then:

1. If u ∈W 1,2
0 , then ψ(u) ∈W 1,2

0 , with ∇ψ(u) = ψ′(u)∇u in the weak sense. Moreover, the operator

u 7→ ψ(u) is continuous W 1,2
0 →W 1,2

0 .

2. If u(t) ∈ L2(I;W 1,2
0 ) with d

dtu(t) ∈ L2(I;W−1,2), then t 7→
∫

Ω

ψ(u(t)) dx is weakly differentiable

with
d

dt

∫

Ω

ψ(u(t)) dx =

〈

d

dt
u(t), ψ′(u(t))

〉

for a.e. t ∈ I.

Definition. If v ∈ L2 or W 1,2, then v ≥ 0 (resp. v ≤ 0) means: v(x) ≥ 0 (resp. v(x) ≤ 0) for a.e. x ∈ Ω.
If f ∈ W−1,2, then f ≥ 0 (resp. f ≤ 0) means: 〈f, v〉 ≥ 0 (resp. 〈f, v〉 ≤ 0) for all v ∈ W 1,2

0 such that
v ≥ 0.

Theorem 2.4. [Maximum principle for w.s.] Let u(t) be a weak solution. Let f(·) ≥ 0, u(0) ≤ 0 and
h(t) ≤ 0 for a.e. t ∈ I. Then u(t) ≤ 0 for a.e. t ∈ I.

Remarks. Minimum principle: if f(·) ≤ 0, u(0) ≥ 0 and h(t) ≥ 0 for a.e. t ∈ I, then u(t) ≥ 0 for a.e.
t ∈ I. Generalization: if u(0) ≤ M and u ≤ M on ∂Ω (in the sense of traces), and f(·) ≥ 0, h(t) ≤ 0,
then u(t) ≤M for a.e. t ∈ I.

Recall. Regularity of the laplace equation: if u ∈ W 1,2
0 is a weak solution to −∆u = ιh, where h ∈ L2

and we moreover have ∂Ω ∈ C2, then u ∈W 2,2 and there holds ‖u‖2,2 ≤ cR‖f‖2, where cR only depends
on Ω.

Theorem 2.5. [Strong solution.] Let u(t) ∈ L2(I;W 1,2
0 ) be a weak solution of the heat equation

∂tu−∆u+ f(u) = h(t, x)
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and let u0 ∈W 1,2
0 , h(t) ∈ L2(I;L2) and ∂Ω ∈ C2. Then

u(t) ∈ L∞(I;W 1,2
0 ) ∩ L2(I;W 2,2)

d

dt
u(t) ∈ L2(I;L2)

Remarks. The equation now holds a.e. in I × Ω. Note that u(t) ∈ L2(I;W 1,2) and d
dtu(t) ∈ L2(I;L2)

implies (in fact is equivalent to) u(t, x) ∈W 1,2(I × Ω).
Note also that even if u(0) ∈ L2 only, we have u(t) ∈W 1,2

0 for a.e. t ∈ I, hence the regularity of Theorem
2.5 holds at least locally, i.e. on [τ, T ] for arbitrary τ > 0. This is a general principle: parabolic equations
regularize in time.
The regularity can be further improved – as far as the data permit.

3. Hyperbolic 2nd order equation

In this chapter we will consider a semilinear second order hyperbolic equation

∂ttu−∆u+ αut + f(u) = h(t, x) (t, x) ∈ I × Ω (H1)

u = u0 t = 0, x ∈ Ω (H2)

∂tu = u1 t = 0, x ∈ Ω (H3)

u = 0 t ∈ I, x ∈ ∂Ω (H4)

Again, u = u(t, x) is the unknown solution. The right-hand side h = h(t, x) and initial conditions u0,
u1 in (H2), (H3) are given. Dirichlet boundary condition is imposed in (H4).

Assumptions. We will assume that Ω ⊂ R
n is a bounded domain with Lipschitz boundary, f(z) : R →

R is globally Lipschitz, and α ∈ R. Concerning the data, we assume h(t) ∈ L2(I;L2), u0 ∈ W 1,2
0 and

u1 ∈ L2.

Definition. Function u(t) ∈ L∞(I;W 1,2
0 ) with d

dtu(t) ∈ L∞(I;L2) is called weak solution to (H1),
provided that

d2

dt2
(u(t), v) + (∇u(t),∇v) + α(

d

dt
u(t), v) + (f(u(t)), v) = (h(t), v)

in the sense of distributions on (0, T ), for any v ∈W 1,2
0 fixed.

Remarks. Expanding the definition, weak solution means that

∫

I
(u(t), w)ϕ′′(t) dt+

∫

I
(∇u(t),∇w)ϕ(t) dt + α

∫

I
(
d

dt
u(t), w)ϕ(t) dt

+

∫

I
(f(u(t)), w)ϕ(t) dt =

∫

I
(h(t), w)ϕ(t) dt

for any v ∈ W 1,2
0 , ϕ(t) ∈ D(I). On the other hand, if define A : W 1,2

0 → W−1,2 as 〈Au, v〉 = (∇u,∇v)

for v ∈W 1,2
0 (so essentially A = −∆ weakly), then the weak formulation can be written more succintly

as
d2

dt2
ιu(t) +Au(t) + αι

d

dt
u(t) + ιf(u(t)) = ιh(t)
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as equation in W−1,2. Or equivalently, denoting v(t) = d
dtu(t)

d

dt
ιv(t) +Au(t) + αιv(t) + ιf(u(t)) = ιh(t)

It can be shown that if u(t) is weak solution, then u(t) : I → W 1,2
0 and d

dtu(t) : I → L2 are weakly
continuous (in the sense of representative). Hence the initial conditions (H2), (H3) are meaningful.

Theorem 3.1. Weak solution is unique.

Notation. The energy is defined

E[u] =
1

2

(

‖
d

dt
u‖22 + ‖∇u‖22

)

Multiplying (H1) with ∂tu and integrating over Ω, the first two terms give d
dtE[u]; unfortunately, this

is not justified in the class of weak solutions. We however have the following:

Lemma 3.1. Let u(t) ∈ L2(I;W 1,2
0 ) with d

dtu(t) ∈ L2(I;L2) be such that d
dt ιu(t) + Au(t) = ιH(t)

weakly in I, where H(t) ∈ L2(I;L2). Then t 7→ E[u(t)] is weakly differentiable and

d

dt
E[u(t)] = (H(t),

d

dt
u(t))

for a.e. t ∈ I.

Theorem 3.2. Let h(t) ∈ L2(I;L2), u0 ∈ W 1,2
0 and u1 ∈ L2 be given. Then there exists u(t) ∈

L∞(I;W 1,2
0 ) with d

dtu(t) ∈ L
∞(I;L2) a weak solution to (H1)–(H4) such that u(0) = u0,

d
dtu(0) = u1 in

the sense of representatives.

Theorem 3.3. [Strong solution.] Let u(t) ∈ L∞(I;W 1,2
0 ) with d

dtu(t) ∈ L∞(I;L2) be a weak solution
to the wave equation

d2

dt2
u−∆u+ α

d

dt
u = h(t)

Let the data satisfy h(t) ∈W 1,2(I;L2), u1 ∈W 1,2
0 , u0 ∈W 1,2

0 , h(0) + ∆u0 ∈ L2 and let ∂Ω be C2.
Then

u(t) ∈ L∞(I;W 2,2),
d

dt
u(t) ∈ L∞(I;W 1,2

0 )

d2

dt2
u(t) ∈ L∞(I;L2)

Remark. For parabolic equation, we have seen that any weak solution immediately becomes more
regular (i.e. strong) even if u(0) ∈ L2 only.
For the wave equation this cannot be true: note that if we reverse time, only the sign of α is changed.

Notation. For any weak solution u = u(t, x) we define

e(t, x) =
1

2
|
d

dt
u(t, x)|2 +

1

2
|∇u(t, x)|2

Note that e(t, x) ∈ L1(I × Ω) at least, and is related to the energy via

E[u(t)] =

∫

Ω

e(t, x) dx

11



We will also write B(x0, r) = {x ∈ R
n; |x− x0| ≤ r}.

Theorem 3.4. [Wave principle.] Let u(t) be weak solution to the damped wave equation

d2

dt2
u−∆u+ α

d

dt
u = 0

where α ≥ 0. Let x0 ∈ Ω, τ ∈ I be such that B(x0, τ) ⊂ Ω. Then

∫

B(x0,τ−t)

e(t, x) dx ≤

∫

B(x0,τ)

e(0, x) dx

for all t ∈ [0, τ ].

Remark. The above theorem uses a formula, which holds for any smooth e = e(t, x):

d

dt

∫

B(x0,τ−t)

e(t, x) dx =

∫

B(x0,τ−t)

∂te(t, x) dx −

∫

∂B(x0,τ−t)

e(t, x) dS(x)

Corollary. [Finite speed of propagation.] Let u(t) be weak solution to damped wave equation; let
u(0) = 0, d

dtu(0) = 0 in some B(x0, τ) ⊂ Ω. Then u ≡ 0 a.e. in the cone

{(t, x); |x− x0| ≤ τ − t}

4. Theory of semigroups

4.1. Homogeneous problem

Our first aim in this chapter is to develop a theory of abstract equations of the form

d

dt
x = Ax (4.1)

where x(t) : I → X and A : X → X is linear, but not necessarily bounded operator. In other words, we
will want to define etA in some generalized sense.

Notation. In this chapter X is a Banach space with norm ‖·‖, L(X) is the space of linear continuous
operators L : X → X with the usual norm. By unbounded operator we mean a couple (A,D(A)), where
D(A) ⊂ X is a linear subspace and A : D(A) → X is linear (but not necessarily bounded) operator.

Definition. Function S(t) : [0,∞) → L(X) is called a semigroup of operators in X, if
(i) S(0) = I
(ii) S(t)S(s) = S(t+ s) for all t, s ≥ 0
If moreover
(iii) S(t)x→ x as t→ 0+ for any x ∈ X fixed, we say that S(t) form a c0-semigroup in X.

Remarks. Replacing (iii) by a stronger condition (iii)’ S(t) → I in L(X) for t → 0+, we obtain the
so-called uniformly continuous semigroup. In such a case one already has S(t) = etA for some A ∈ L(X).

Lemma 4.1. Let S(t) be a c0-semigroup in X. Then

1. ∃M ≥ 1, ω ≥ 0 such that ‖S(t)‖
L(X) ≤Meωt for all t ≥ 0
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2. the map t 7→ S(t)x is continuous [0,∞) → X for any x ∈ X fixed

Definition. By a generator of semigroup S(t) we mean an unbounded operator (A,D(A)), defined by

Ax = lim
h→0+

1

h

(

S(h)x− x
)

for x ∈ D(A)

where we set

D(A) =
{

x ∈ X; lim
h→0+

1

h
(S(h)x − x) exists in X

}

Remark. It is easy to verify that in the above definition D(A) ⊂ X is a linear subspace, and A :
D(A) → X is a linear operator.

Theorem 4.1. [Basic properties of generator.] Let S(t) be a c0-semigroup in X, let (A,D(A)) be its
generator. Then

1. x ∈ D(A) =⇒ S(t)x ∈ D(A) for all t ≥ 0

2. x ∈ D(A) =⇒ AS(t)x = S(t)Ax = d
dtS(t)x for any t ≥ 0 (derivative at t = 0 is only from the

right)

3. for any x ∈ X and t ≥ 0, one has
∫ t
0 S(s)x ds ∈ D(A) and A

( ∫ t
0 S(s)x ds

)

= S(t)x− x

Remark. The above theorem says that D(A) is invariant w.r.t. S(t), that A and S(t) commute on
D(A) and most importantly, if x0 ∈ D(A), then x(t) = S(t)x0 is a classical solution to (4.1) with initial
condition x(0) = x0.

Definition. We say that the unbounded operator (A,D(A)) is closed, if un ∈ D(A), un → u and
Aun → v imply u ∈ D(A) and Au = v.

Remark. It can be shown that (A,D(A)) is closed if and only if D(A) is complete (i.e. Banach) space
w.r.t. the norm ‖u‖ + ‖Au‖. In this situation A : D(A) → X is continuous.

Theorem 4.2. Let (A,D(A)) be a generator of some c0-semigroup in X. Then D(A) is dense in X and
(A,D(A)) is closed.

Lemma 4.2. [Unicity of semigroup.] Let S(t), S̃(t) be c0-semigroups that have the same generator.
Then S(t) = S̃(t) for all t ≥ 0.

Definition. Let (A,D(A)) be an unbounded operator in X. We define

• the resolvent set ρ(A) = {λ ∈ C, λI −A : D(A) → X is one-to-one }

• the resolvent R(λ,A) = (λI −A)−1 : X → D(A), defined if λ ∈ ρ(A)

• the spectrum σ(A) = C \ ρ(A)

Remarks. The following are easy to show:

• if (A,D(A)) is closed, then R(λ,A), once it is defined, must be already continuous, i.e. R(λ,A) ∈
L(X); moreover ρ(A) ⊂ C is open, and the mapping λ 7→ R(λ,A) is analytic C → L(X)
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• one has the resolvent indentity:

R(λ,A)−R(µ,A) = (µ − λ)R(λ,A)R(µ,A), for any λ, µ ∈ ρ(A)

• one also has

AR(λ,A)x = λR(λ,A)x− x, x ∈ X,

R(λ,A)Ax = λR(λ,A)x− x, x ∈ D(A);

in particular
AR(λ,A) = R(λ,A)A on D(A)

Lemma 4.3. Let (A,D(A)) be a generator of c0-semigroup S(t) on X; and let ‖S(t)‖
L(X) ≤ Meωt for

all t ≥ 0. Then for every λ > ω one has λ ∈ ρ(A), the resolvent can be computed as

R(λ,A)x =

∫

∞

0
e−λtS(t)x dt

and moreover, ‖R(λ,A)‖
L(X) ≤

M
λ−ω .

Remark. If S(t) is a c0-semigroup with generator (A,D(A)), then S̃(t) = e−ωtS(t) is a c0-semigroup
with generator Ã = A− ωI, and D(Ã) = D(A). Clearly also λ ∈ ρ(Ã) if and only if λ+ ω ∈ ρ(A), and
R(λ, Ã) = R(λ+ ω,A).

Definition. We call S(t) a contraction c0-semigroup, provided that ‖S(t)‖
L(X) ≤ 1 for all t ≥ 0.

Theorem 4.3. [Hille-Yosida.] Let (A,D(A)) be an unbounded operator on X. Then the following are
equivalent:

1. there exists a c0-semigroup S(t) of contractions on X such that (A,D(A)) is its generator

2. (A,D(A)) is closed, D(A) is dense in X and for every λ > 0 one has λ ∈ ρ(A), ‖R(λ,A)‖
L(X) ≤

1
λ

Remarks. The proof 2 =⇒ 1 uses the so-called Yosida approximation Anx → Ax, where An =
n2R(n,A)− nI are bounded. Other possible ,,exponential formula“ reads

S(t)x = lim
n→∞

(

I −
tA

n

)−n

x

where
(

I − tA
n

)−1
= n

tR(
n
t , A). Cf. the well-known formula ea = limn→∞(1− a/n)−n.

A general version of Hille-Yosida theorem says: (A,D(A)) is a generator of c0-semigroup satisfying
‖S(t)‖

L(X) ≤Metω , if and only if (A,D(A)) is closed, D(A) is dense in X and for every λ > ω one has

λ ∈ ρ(A) and ‖R(λ,A)‖
L(X) ≤

M
λ−ω .

A somewhat related is the Lumer-Phillips theorem: (A,D(A)) is a generator of c0-semigroup of contrac-
tions, if and only if it is closed, densely defined, and for every λ > 0 one has ‖λx−Ax‖X ≥ λ‖x‖X ,
x ∈ D(A) and moreover, λ0I −A : D(A) → X is onto for some λ0 > 0.
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4.2. Nonhomogeneous problem

We will now consider a general (nonhomogeneous) Cauchy problem

d

dt
u = Au+ f(t), u(0) = u0 (4.2)

where u0 ∈ X and f(t) : I → X are given, I = [0, T ]. We will assume that (A,D(A)) is an unbounded
operator, which generates a c0-semigroup S(t), and that f(t) ∈ L1(I;X) at least.

Definition. Function u(t) is called classical solution to (4.2), if u(t) ∈ C1(I;X)∩C(I;D(A)), and (4.2)
holds for every t ∈ I.
Function u(t) is called strong solution to (4.2), provided that u(t) ∈W 1,1(I;X)∩L1(I;D(A)) and (4.2)
holds for a.e. t ∈ I.

Remarks. Classical implies strong, and strong (in view of Lemma 1.3) is equivalent to

u(t) = u0 +

∫ t

0
Au(s) + f(s) ds

for a.e. t ∈ I, where the right-hand side is the absolutely continuous representative of u(t).
Note that u(t) ∈ C(I;D(A)) (where D(A) is considered with the graph norm) is equivalent to: u(t) ∈
C(I;X), u(t) ∈ D(A) for every t ∈ I and moreover, t 7→ Au(t) is continuous I → X.
Analogous assertion is concerning integrability is:

Lemma 4.4. [Hille’s theorem.] Let (A,D(A)) be closed operator. Then u(t) ∈ L1(I;D(A)) if and only
if u(t) ∈ L1(I;X), u(t) ∈ D(A) for a.e. t ∈ I and Au(t) ∈ L1(I;X).
In this situation one also has

∫

I u(t) dt ∈ D(A) and

A

(∫

I
u(t) dt

)

=

∫

I
Au(t) dt

Definition. Function u(t) : I → X is called mild solution to (4.2), provided that

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(s) ds, t ∈ I

Remarks. Recalling that S(t) is a semigroup generated by A, hence ,,S(t) = etA“, the definition is
motivated by the ,,variation of constants“ formula. The integral is finite in fact, u(t) ∈ C(I;X), see
lemma below.
Note that trivially, one has existence and uniqueness of mild solution.

Lemma 4.5. [Abstract convolution.] Let S(t) be a c0-semigroup on X, let v(t) =
∫ t
0 S(t − s)f(s) ds,

t ∈ I. Then

1. f(t) ∈ L1(I;X) =⇒ v(t) ∈ C(I;X)

2. f(t) ∈ C0,1(I;X) =⇒ v(t) ∈ C0,1(I;X)

3. f(t) ∈ C1(I;X) =⇒ v(t) ∈ C1(I;X), and v′(t) = S(t)f(0) +
∫ t
0 S(t− s)f ′(s) ds, t ∈ X.
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Lemma 4.6. Function u(t) is mild solution to (4.2), if and only if u(t) ∈ C(I;X), for every t ∈ I one
has

∫ t
0 u(s) ds ∈ D(A) and

u(t) = u0 +A

(∫ t

0
u(s) ds

)

+

∫ t

0
f(s) ds ∀t ∈ I

Corollary. Strong solution is also mild. Classical and strong solutions, whenever they exist, are unique.

Remark. Mild solution, in general, is not strong: assume that x ∈ X is such that S(t)x 6∈ D(A) for any
t ≥ 0. Then u(t) = tS(t)x is mild solution of (4.2) with f(t) = S(t)x, u0 = 0, but u(t) 6∈ D(A) for any
t > 0.
However, every mild solution is a uniform limit of classical solutions. For h > 0, we set uh(t) =

1/h
∫ t+h
t u(s) ds and verify (with help of Lemma 4.6.) that uh(t) is classical solution of (4.2) with

initial condition uh(0) ∈ D(A), and right-hand side fh(t). Clearly uh(t) ⇒ u(t) thanks to properties of
convolution.

Theorem 4.4. [Regularity of mild solution.]

1. Let u0 ∈ D(A) and f(t) ∈ C1(I;X). Then mild solution is classical.

2. Let u0 ∈ D(A) and f(t) ∈ C0,1(I;X); let moreover X be reflexive. Then mild solution is strong.
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