Theorem 1.9.* Let X be reflexive, separable and $p \in[1, \infty)$. Denote $\mathcal{X}=L^{p}(I ; X)$. Then for any $F \in \mathcal{X}^{*}$ there is $v(t) \in L^{p^{\prime}}\left(I, X^{*}\right)$ such that

$$
\langle F, u(\cdot)\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\int_{I}\langle v(t), u(t)\rangle_{X^{*}, X} d t \quad \forall u(t) \in \mathcal{X}
$$

Moreover, $v(t)$ is uniquely defined, and its norm in $L^{p^{\prime}}\left(I ; X^{*}\right)$ equals to the norm of F in \mathcal{X}^{*}. Proof. STEP 1. For $\tau \in I$ and $x \in X$ denote $u_{\tau, x}(t)=\chi_{[0, \tau]}(t) x$. Clearly $u_{\tau, x}(t) \in \mathcal{X}$ and $x \mapsto\left\langle F, u_{\tau, x}(\cdot)\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}$ is linear continuous. Hence there is $g(\tau) \in X^{*}$ such that $\left\langle F, u_{\tau, x}(\cdot)\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}=$ $\langle g(\tau), x\rangle_{X^{*}, X}$ for all $x \in X$.
We will show there is $v(t) \in L^{p^{\prime}}\left(I ; X^{*}\right)$ such that

$$
\begin{align*}
g(\tau) & =\int_{0}^{\tau} v(t) d t \tag{1}\\
\|v(t)\|_{L^{p^{\prime}}\left(I ; X^{*}\right)} & \leq\|F\|_{\mathcal{X}^{*}} \tag{2}
\end{align*}
$$

Observe that with this we are done: (1) implies that

$$
\left\langle F, u_{\tau, x}(\cdot)\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\left\langle\int_{0}^{\tau} v(t) d t, x\right\rangle_{X^{*}, X}=\int_{I}\left\langle v(t), u_{\tau, x}(t)\right\rangle_{X^{*}, X} d t
$$

By linearity we have

$$
\begin{equation*}
\langle F, u(\cdot)\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\int_{I}\langle v(t), u(t)\rangle d t \tag{3}
\end{equation*}
$$

for any $u(t)=\sum_{j} \chi_{\left(\alpha_{j}, \beta_{j}\right]}(t) x_{j}$. But such functions are dense in \mathcal{X}, to which (3) extends, using continuity of F on the left, and Hölder inequality on the right. Furthermore, it now follows from (3) that

$$
\|F\|_{\mathcal{X}^{*}}=\sup _{\|u(t)\|_{\mathcal{X}}=1}\langle F, u(\cdot)\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\sup _{\|u(t)\|_{\mathcal{X}}=1} \int_{I}\langle v(t), u(t)\rangle_{X^{*}, X} d t \leq\|v(t)\|_{L^{p^{\prime}}\left(I ; X^{*}\right)}
$$

by Hölder inequality again. Together with (2) we obtain $\|F\|_{\mathcal{X}^{*}}=\|v(t)\|_{L^{p^{\prime}\left(I ; X^{*}\right)}} ;$ this also implies that $v(t)$ is uniquely defined.
STEP 2. Towards proving (1), we first show that $g(t): I \rightarrow X^{*}$ is absolutely continuous. Let $\left(\alpha_{j}, \beta_{j}\right) \subset I$ be disjoint. It follows from reflexivity of X that there exist $x_{j} \in X$ with $\left\|x_{j}\right\|=1$ such that $\left\|g\left(\beta_{j}\right)-g\left(\alpha_{j}\right)\right\|_{X^{*}}=\left\langle g\left(\beta_{j}\right)-g\left(\alpha_{j}\right), x_{j}\right\rangle_{X^{*}, X}$.
On the other hand

$$
\left\langle g\left(\beta_{j}\right)-g\left(\alpha_{j}\right), x_{j}\right\rangle_{X^{*}, X}=\left\langle F, u_{\beta_{j}, x_{j}}(\cdot)-u_{\alpha_{j}, x_{j}}(\cdot)\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\left\langle F, \chi_{\left(\alpha_{j}, \beta_{j}\right]}(\cdot) x_{j}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}
$$

Hence

$$
\begin{align*}
\sum_{j}\left\|g\left(\beta_{j}\right)-g\left(\alpha_{j}\right)\right\|_{X^{*}} & =\left\langle F, \sum_{j} \chi_{\left(\alpha_{j}, \beta_{j}\right]}(\cdot) x_{j}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}} \\
& \leq\|F\|_{\mathcal{X}^{*}}\left\|_{j} \chi_{\left(\alpha_{j}, \beta_{j}\right]}(t) x_{j}\right\|_{\mathcal{X}}=\|F\|_{\mathcal{X}^{*}}\left(\sum_{j}\left(\beta_{j}-\alpha_{j}\right)\right)^{\frac{1}{p}} \tag{4}
\end{align*}
$$

Obviously, this implies $g(t) \in A C\left(I ; X^{*}\right)$.
STEP 3. By previous step and the fact that $g(0)=0$, we see that (1) holds with some $v(t) \in L^{1}\left(I ; X^{*}\right)$. It remains to establish (2).
If $p=1$, observe that (4) implies $g(t)$ is lipschitz, and in particular $v(t)=g^{\prime}(t)$ a.e. is essentially bounded by $\|F\|_{\mathcal{X}^{*}}$. In other words, (2) holds with $p^{\prime}=\infty$ as required.
If $p \in(1, \infty)$, one can proceed as follows. As in Step 1 we use linearity to deduce (3) for all $u(t)=\sum_{j} \chi_{\left(\alpha_{j}, \beta_{j}\right]}(t) x_{j}$. We now just have $v(t) \in L^{1}\left(I ; X^{*}\right)$, so the density argument only extends to $u(t) \in L^{\infty}(I ; X)$.
We need one more limiting argument: set

$$
v_{n}(t)=\left\{\begin{array}{l}
v(t), \quad \text { if }\|v(t)\|_{X^{*}} \leq n \\
0, \quad \text { otherwise }
\end{array}\right.
$$

and $u_{n}(t)=z(t)\left\|v_{n}(t)\right\|_{X^{*}}^{p^{\prime}-1}$, where $z(t) \in X$ are such that $\|z(t)\|_{X}=1$ and $\langle v(t), z(t)\rangle_{X^{*}, X}=$ $\|v(t)\|_{X^{*}}$. Now $u_{n}(t)$ are essentially bounded, and $\left\|u_{n}(t)\right\|_{X}^{p}=\left\langle v(t), u_{n}(t)\right\rangle_{X^{*}, X}=\left\|v_{n}(t)\right\|_{X^{*}}^{p^{\prime}}$. Plugging $u_{n}(t)$ into (3) gives, after a simple manipulation, that

$$
\left(\int_{I}\left\|v_{n}(t)\right\|_{X^{*}}^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}} \leq\|F\|_{\mathcal{X}^{*}}
$$

Since $\left\|v_{n}(t)\right\|_{X^{*}} \nearrow\|v(t)\|_{X^{*}}$, estimate (2) follows by Levi theorem.

