ALGORITHMS ON LATTICES

EXERCISE 1

IMPORTANT: Your solutions will only be evaluated once you have solved Problem 8.

Problem 1. [5 pts] Show that $\{(a + b\sqrt{2}, a - b\sqrt{2}) \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}\}$ is a lattice. **Problem 2.** [6 pts]

Problem 2. [6 pts]

(a) Given an $m \times n$ integer matrix A show that

$$Ker(A) = \{ (x_1, \dots, x_m) \in \mathbb{Z}^m \mid (x_1, \dots, x_m) A = (0, \dots, 0) \}$$

is a lattice of rank $m - \operatorname{rank}(A)$.

(b) Given an $m \times n$ integer matrix A and a positive integer n show that

$$\{(x_1,\ldots,x_m)\in\mathbb{Z}^m\mid (x_1,\ldots,x_m)A=(0,\ldots,0)\pmod{n}\}$$

is a lattice of rank m.

Problem 3. [6 pts] Let $a, b \in \mathbb{N}$. Show that there exits a solution $x, y, z \in \mathbb{Z}$ to the equation ax + by = z satisfying $x^2 + z^2 \leq b\sqrt{2}$.

Problem 4. [4 pts] Let b_1, b_2 be a basis of $L \subseteq \mathbb{R}^2$. Suppose that b'_1, b'_2 is the output basis when Gauss-reduction algorithm applied to b_1, b_2 . We will call such a basis b'_1, b'_2 shortest basis.

- (a) Show that $||b'_1|| \le ||b'_2|| \le ||b'_2 + kb'_1||$ for all $k \in \mathbb{Z}$.
- (b) Show that b'_1, b'_2 is shortest basis if and only if $||b'_1|| \le ||b'_2|| \le ||b'_2 \pm b'_1||$.
- **Problem 5.[8 pts]** Let b'_1, b'_2 be shortest basis of $L \subseteq \mathbb{R}^2$.
 - (a) Define $Q(x, y) = ||xb'_1 + yb'_2||^2$. Show that $Q(x, y) = ax^2 + 2bxy + cy^2$ with $a, c \ge 0$ and $a \le c$.
- (b) Prove that $Q(1, -1) \ge Q(0, 1)$.
- (c) Show that $2b \le a$. Hence show that $a \le \sqrt{\frac{4}{3}(ac-b^2)}$.
- (d) Show that $\det(L)^2 = |b^2 ac|$.

Problem 6. [3 pts] Prove that the following three bases of \mathbb{R}^2 all generate the same two-dimensional lattice:

basis 1:
$$b_1 = (0, 2)$$
 $b_2 = (5, 1)$
basis 2: $b_1 = (85, -31)$ $b_2 = (-60, 22)$
basis 3: $b_1 = (-230, 84)$ $b_2 = (545, -199)$.

Problem 7. [3 pts] Apply the Gauss-reduction algorithm to the following pairs of vectors:

$$b_1 = (-1, -38, 86), b_2 = (0, -27, 61)$$

 $b_1 = (40, -82, -74, -5), b_2 = (29, -58, -45, -12).$

Problem 8. [15 pts] Let A be a $m \times n$ integer matrix. Recall that if B = HNF(A) then there is a $m \times m$ unimodular matrix U such that B = UA.

Modify the given HNFORMS algorithm code so that it also produces the unimodular matrix U as part of the output.

(Note: If you don't like the provided HNFORMS code, then you can implement your own version by following the algorithm discussed in the exercise session.).