
Extending linearly independent vectors to a basis of the lattice

Consider a lattice L ⊆ Rm with a basis B = {u1, . . . , un}.

1. Let v =
∑n

i=1 ziui be a vector of L. Show that there exists a basis of L
containing v if and only if GCD(z1, . . . , zn) = 1.

2. Suggest an algorithm which takes a basis B of L ⊆ Zm and v ∈ L on
the input and decides whether L has a basis containing v. If such a basis
exists the algorithm also outputs one such basis.

3. (elective) Suggest an algorithm which takes a basis B of L ⊆ Zm and
a linearly independent set of vectors X ⊆ L on the input and decides
whether L has a basis containing X. If it is the case, the algorithm also
outputs such a basis.
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Experiments with attacks against the Merkle-Hellman scheme
Recall the basic description of the Merkle-Hellman cryptosystem introduced

in 1978:
Let s1 < s2 < · · · < sℓ be a superincreasing sequence of positive integers,

that is, si >
∑i−1

j=1 sj for any 2 ≤ i ≤ ℓ. Let N be an integer N >
∑ℓ

i=1 si and
c, d ∈ N such that cd ≡ 1 (mod N). For each 1 ≤ i ≤ ℓ set wi := sic mod N .

In the scheme, public key is the sequence w1, w2, . . . , wℓ and the private key
consists of N and d (it may also include s1, . . . , sℓ).

Assume someone (typically called Bob) wants to transmit a message which
is a sequence of ℓ bits, say ε1, ε2, . . . , εℓ ∈ {0, 1} . Bob computes an integer

C =
∑ℓ

i=1 εiwi , an encryption of his message.
In order to decrypt the message from C the following steps are done:

1. Compute S = Cd mod N

2. For each 1 ≤ i ≤ ℓ compute si = wid mod N (this step can be skipped if
the sequence s1, . . . , sℓ is a part of the private key).

3. Find ε′1, . . . , ε
′
ℓ ∈ {0, 1} such that S =

∑ℓ
i=1 ε

′
isi (this can be done easily

since s1, . . . , sℓ is a superincreasing sequence).

4. return ε′1, . . . , ε
′
ℓ

Recall that the correctness of the decryption is based on the following con-
gruence

S ≡ Cd ≡
ℓ∑

i=1

εi(wid) ≡
ℓ∑

i=1

εisi(mod N)

Since S and
∑ℓ

i=1 εisi are in {0, . . . , N−1}, S =
∑ℓ

i=1 εisi and εi = ε′i for every
1 ≤ i ≤ ℓ.

Remark: The security of the scheme is based on the hardness of the subset
sum problem for the public key, i.e., it should be hard to compute ε1, . . . , εℓ just
from w1, . . . , wℓ and C. However, various attacks against this scheme appeared.
We consider those introduced in the lecture.

When making the experiments you can use implementation of LLL, nearest
plane algorithm and an SVP solver from available libraries, but be aware that
these implementations can be different from the algorithms introduced in the
lecture.

1. Write an algorithm which constructs public key in the described scheme.
Choices s1, . . . , sℓ, N, c should be sufficiently randomized but on the other hand
the length of these parameters should be reasonable. Also c should be sufficiently
large to hide the original sequence s1, . . . , sℓ.

2. Implement the following attack: Given w1, . . . , wℓ the public key and a
ciphertext C, that is, there are ε1, . . . , εℓ ∈ {0, 1} such that C =

∑ℓ
i=1 εiwi.

In Zℓ+1 consider the lattice with basis (1, 0 . . . , 0, w1)
T , (0, 1, 0, . . . , 0, w2)

T ,
. . . ,(0, . . . , 0, 1, wℓ)

T ,(0, . . . , 0, C)T . Compute an LLL-reduced basis of L and
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consider the attack as successful if the basis contains a vector proportional to
(ε1, . . . , εℓ, 0)

T . Make an experiment giving an idea how is the probability of
success of this attack related to ℓ. Regarding the range of ℓ, start for exam-
ple with ℓ = 5 and gradually increase its value until the probability of success
becomes too small (for example less than 0.01) or the computation of the LLL
reduction starts to become too slow.

3. Consider the following modification of the attack from part 2: Instead of
LLL use some algorithm which finds a shortest nonzero vector of L. The attack
will be considered successful if λ1(L) = ||(ε1, . . . , εℓ)T ||. Make an experiment
giving an idea how is the probability of success of this attack related to ℓ.

4. Implement the following attack: Given w1, . . . , wℓ the public key and a
ciphertext C, that is, there are ε1, . . . , εℓ ∈ {0, 1} such that C =

∑ℓ
i=1 εiwi.

In Zℓ+1 consider the lattice with basis (2, 0 . . . , 0, w1)
T , (0, 2, 0, . . . , 0, w2)

T ,
. . . ,(0, . . . , 0, 2, wℓ)

T and a vector t = (1, . . . , 1, C)T . Use the nearest plane
algorithm to find a vector y ∈ L with the property

||y − t|| ≤ 2
ℓ
2 ϱ(t, L) .

We consider this attack successful if ε1, . . . , εℓ can be found looking at coordi-
nates of y− t (see the argument in the proof of NP-completeness of CVP). Once
again make an experiment giving an idea how is the probability of success of
this attack related to ℓ.

5. Now forget about Merkle-Hellman scheme and consider a related problem:
Assume that w1, . . . , wℓ are randomly chosen integers from interval {2ℓ2 , . . . , 2ℓ2+1}
and S is an integer of the form S =

∑ℓ
i=1 εiwi, εi ∈ {0, 1}. For these w1, . . . , wℓ, S

we want to find η1, . . . , ηℓ ∈ {0, 1} such that
∑ℓ

i=1 ηiwi = S. Adapt the method
from 2. and write an algorithm which could give an answer to this problem
using LLL reduction. Make an experiment giving an idea how is the probability
of success of this algorithm related to ℓ. Is it possible to use observation from
this experiment to increase the performance of the attack from part 2?

6. (elective) One can increase security of the scheme adding more rounds of
hiding initial sequence s1, . . . , sℓ. In the scenario described above when having
w1, . . . , wℓ we choose N ′, c′, d′ such that N ′ >

∑ℓ
i=1 wi, c

′d′ ≡ 1 (mod N ′). For
1 ≤ i ≤ ℓ let w′

i = wic
′ mod N ′. The public key is w′

1, . . . , w
′
ℓ. Implement the

attack from 2. against this modified scheme and decide whether this modifica-
tion increases resistance of the scheme against this attack. You can also increase
the number of rounds.

Remark: You can find information about a theoretical background behind some
of these experiments in paper The Rise and Fall of Knapsack Cryptosystems by
Andrew Odlyzko.
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