7. Circulation

29. November 2023

Problem 1.

Two trucks with the weight $m_T = 5000$ kg and the area of their side $S_T = 20$ m² are moving next to each other with the velocity U = 90 km/h (on the straight road, in windless conditions). Estimate the acceleration given by the difference of the external pressure and the pressure between them. Assume that the distance of the trucks d is similar to their width m and that the air "from the half of their faces" blows to the space between them (Fig. 1) in a vertically homogeneous way.

Solution:

Equivalently to the problem, we can consider standing trucks, with wind moving against them with velocity -U. We will denote the external pressure by p_0 and the pressure and the velocity size between the trucks by p_i and U_i .

Based on the continuity equation (conservation of mass), we know that for velocity between the trucks holds $(m + d)U = U_i d$. Therefore,

$$U_i = \left(1 + \frac{m}{d}\right)U.$$

If the flow around the trucks became stationary and we consider the air to be incompressible, we can apply the Bernulli equation in the form

$$\frac{1}{2}\rho U^2 + p_0 = \frac{1}{2}\rho U_i^2 + p_i,$$

where $\rho \approx 1.2 \text{ kg/m}^3$ is the air density. The pressure difference is therefore

$$p_0 - p_i = \frac{1}{2}\rho\left[\left(1 + \frac{m}{d}\right)^2 U^2 - U^2\right] = \rho \frac{m}{d}U^2 + \frac{1}{2}\rho\left(\frac{m}{d}\right)^2 U^2.$$

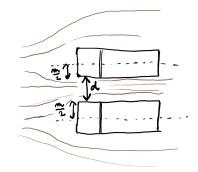


Figure 1: Truck moving next to each other.

This density gradient causes the force $F = (p_0 - p_i)S_T$, acting on each of the trucks. The acceleration of each of the trucks is therefore

$$a = \frac{F}{m_T} = \frac{S_T}{m_T} \left(\rho \frac{m}{d} U^2 + \frac{1}{2} \rho \left(\frac{m}{d} \right)^2 U^2 \right).$$

Numerically, this is

$$a \approx \frac{20}{5000} \left(1.2 * 1 * 25^2 + \frac{1.2}{2} * 1^2 * 25^2 \right) = 4.5 \text{ m/s}^2 = 16.2 \text{ km/h/s}.$$

If the drivers would not adjust the direction of their motion, they would crash relatively fast (given the used approximations).

Problem 2.

Consider the curve C(t) given by the particles of the fluid

$$\mathbf{x} = (a\cos s + a\alpha t\sin s, a\sin s, 0), \quad 0 \le s < 2\pi$$

By the direct computation, show that

$$\Gamma = \int_{C(t)} \mathbf{u} \cdot \mathrm{d}\mathbf{x} = \int_0^{2\pi} \mathbf{u} \cdot \frac{\partial \mathbf{x}}{\partial s} \,\mathrm{d}s$$

does not depend on time. Why?

Solution:

For the direct computation of the circulation, we first need to find the velocity. This can be computed as the derivative of the vector \mathbf{x} with respect to time with constant initial position of the particle.But taking the initial position constant is equivalent to taking the parameter s constant. Therefore,

$$\mathbf{u} = \left(\frac{\partial \mathbf{x}}{\partial t}\right)_s = (a\alpha \sin s, 0, 0) = (\alpha y, 0, 0)$$

The circulation is then

$$\Gamma = \int_0^{2\pi} \left(-\alpha a^2 \sin^2 s + a^2 \alpha^2 t \sin s \cos s \right) \mathrm{d}s = -\alpha a^2 \pi,$$

which does indeed not depend on time.

Why? Because the curve was defined using the fluid particles, it moves with the fluid, so it is a material curve. We also know that the curve is closed: this follows from $\mathbf{x}(s=0) = (a, 0, 0) = \mathbf{x}(s=2\pi)$.By the Kelvin theorem, we know that Γ must be constant.