
8. Hamiltonian mechanics

6. December 2023

Problem 1.
Consider a Poisson bracket (bilinear mapping from F(M)×F(M) → F(M), where F(M) is a space
of function on a manifold M) defined by the relation

{F (x), G(x)} =

(
∂F

∂x

)T

L

(
∂G

∂x

)
with so-called Poisson bivector given by the relation

L =

(
0 1
−1 0

)
.

a) Show that for x = (q, p), the Poisson bracket can be written as

{F,G} = ∂qF∂pG− ∂pF∂qG.

b) Show that the equation ẋ = {x, H} with x = (q, p) is equivalent to the notation of Hamiltonian
canonical equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

c) Write the equations of motion for the motion of a free particle in an external field, described by
the Hamiltonian H = p2/2m+ V (q).

Solution:
a) From the matrix multiplication

{F,G} =
(
∂qF ∂pF

)( 0 1
−1 0

)(
∂qG
∂pG

)
=

(
∂qF ∂pF

)( ∂pG
−∂qG

)
= ∂qF∂pG− ∂pF∂qG.

b) By expanding the components of the equation ẋ = {x, H}:

q̇ = {q,H} = (∂qq)∂pH − (∂pq)∂qH = ∂pH,

ṗ = {p,H} = (∂qp)∂pH − (∂pp)∂qH = −∂qH.

c) By substituting of the Hamiltonian:

q̇ =
p

m
= v,

ṗ =∂qV.
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These are therefore the standard equations of motion: From the first equation, the velocity is given
by the change of the position. The second equation expresses the second Newton law in the form that
the change of the momentum is given by the force expressed using the potential V .

Problem 2.
The previous Hamiltonian description can be generalized to an uncanonical form, in which the Poisson
bivector is given by a different matrix and we might have a different vector x. An example of such
a case can be the rotation of a rigid body that can be described in the spaced formed by the three
components of the angular momentum vector m with the Hamiltonian

H(m) =
1

2

(
m2

1

I1
+

m2
2

I2
+

m2
3

I3

)
,

, where I is the moment of inertia, and a cleverly chosen Poisson bivector Lij = −mkεkij , where mi

are components of the angular momentum and εijk is the Levi-Civita symbol. This notation is useful
as it incomporates certain conservation properties. Using the formalism, decide if the function |m|2
is conserved.

Solution:
In the Hamiltonian mechanics, a quantity is conserved if its Poisson bracket with the Hamiltonian is
zero. Starting with the equations of motion in the form ṁ = {m, H}, we would get this for a function
F from

Ḟ = (∂mF ) · ṁ = (∂mF )T ṁ = (∂mF )T {m, H} = (∂mF )T (∂mm)TL∂mH = (∂mF )TL∂mH = {F,H}.

We therefore need to compute the Poisson bracket {|m|2, H}. Using the Poisson bivector, we have

{|m|2, H} = −miεijk
(
∂mj

|m|2
)
(∂mk

H) = −miεijk(2mj) (∂mk
H) = +mjεjik(2mi) (∂mk

H) =

= +mjεjik
(
∂mi

|m|2
)
(∂mk

H) = −{|m|2, H},

The quantity is therefore conserved.

It is worth noticing that we did not use the fact that the function H is the Hamiltonian. The relation
{|m|2, E} = 0 therefore holds for every function E, which defines a special class of functions called
Casimir invariants that play an important role e.g., in the stability theory. The reason is that if you
add an arbitrary multiple of the Casimir function to the Hamiltonian, the equations of motion would
still hold.

One can further notice that |m|2 is not the only quantity for which this holds: Any function f(|m|2)
would be a Casimir function, too.

In continuum mechanics, this kind of generalization of the Hamiltonian mechanics is still not enough.
To be able to describe a state of fluid, we need to describe properties of all the particles. And the
continuum mechanics assumes there are infinitely many fluid particles (at each point of the fluid, there
is exactly one particle). This means that the vector x needs to be infinite-dimensional - it is therefore
a function. With this generalisation, the form of equation remains the same. Instead of function,
we however have operators, the Poisson bracket works on the space of operators and instead of the
derivative, we have the functional derivative.
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