1. Helmholtz decomposition

3. October 2024

Exercise 1.

Consider following velocity vectors:

$$\mathbf{u}_1 = (y, 0, 0), \mathbf{u}_2 = (-y, x, 0), \mathbf{u}_3 = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right)$$

Plot the velocity fields and compute their curl. In which sense does it hold that in the rotating flow, the velocity curl is non-zero?

Solution:

The fields are depicted in Fig. 1. Velocity \mathbf{u}_1 (locally) represents for example the situation of two parallel planar surfaces moving against each other in their planes.

Curl computations:

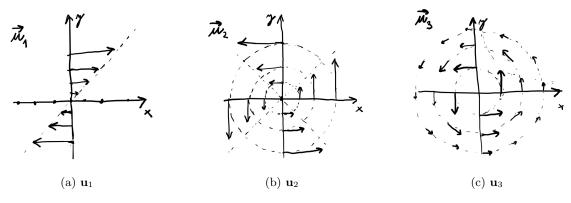
$$\nabla \times \mathbf{u}_1 = (0, 0, -1)$$

$$\nabla \times \mathbf{u}_2 = (0, 0, 2)$$

$$\nabla \times \mathbf{u}_3 = \left(0, 0, \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} + \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2}\right) = (0, 0, 0)$$

Only the field \mathbf{u}_3 has therefore zero curl. On the other hand, vector fields \mathbf{u}_1 a \mathbf{u}_2 are vortical.

Continuum mechanics describes behaviour in individual points. The vector field \mathbf{u}_1 is vortical, because it causes "vortical" motion for example around the point (0,0,0), similarly as the vector field \mathbf{u}_2 . On



Obrázek 1: Plots for Exercise 1.

the other hand, vector field \mathbf{u}_3 is irrotational, because the particles just "circle" around the point (0,0,0).

Exercise 2.

Consider vector fields from Exercise 1.

a) Are these fields divergent? b) If it holds that the curl of the given vector field is identically zero in \mathbb{R}^3 , can we deduce something about its divergence? (Think about the Helmholtz decomposition.)

Solution:

- a) All the fields from exercise 1 have zero divergence.
- b) Yes, in principle. From the Helmholtz decomposition, we know that

$$\mathbf{u} = \nabla \phi + \nabla \times A$$
,

where

$$\phi(\mathbf{r}) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\nabla \cdot \mathbf{u}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} \, \mathrm{d}v', \tag{1}$$

$$\mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\nabla \times \mathbf{u}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} \, \mathrm{d}v'. \tag{2}$$

This implies that if $\nabla \times \mathbf{u} \equiv 0$, then $\mathbf{A} \equiv \mathbf{0}$, and therefore also $\nabla \times \mathbf{A} \equiv \mathbf{0}$. If we consider nontrivial vector field \mathbf{u} , it must hold $\nabla \phi \not\equiv \mathbf{0}$. However, according to Eq. (1), this cannot happen if $\nabla \cdot \mathbf{u} \equiv 0$. Therefore, if it holds for a vector field that both its divergence and curl are zero, the field must be, as a result of the Helmholtz decomposition, identically equal zero.

Why this doesn't hold for a function \mathbf{u}_3 from the first exercise: This field is not continuous enough - it is not defined in the origin, Helmholtz decomposition therefore cannot be applied. Helmholtz decomposition in \mathbb{R}^3 assumes that the field is at least C^2 (and decays to infinity at least as 1/r).

Exercise 3.

For the velocity field $\mathbf{u} = (-y, x, 0)$, find an arbitrary scalar and vector potential ϕ and \mathbf{A} , so that

$$\mathbf{u} = \nabla \phi + \nabla \times \mathbf{A} \tag{3}$$

inside a bounded domain in \mathbb{R}^3 .

Solution:

Vector field **u** has zero divergence. It holds

$$0 = \nabla \cdot \mathbf{u} = \nabla \cdot \nabla \phi + \nabla \cdot \nabla \times \mathbf{A} = \Delta \phi + 0.$$

Scalar potential ϕ must therefore fulfil the condition $\Delta \phi = 0$. There is a lot of such functions (we are working inside a domain of unspecified shape, so we aren't bothering with any boundary conditions). We can choose for example $\phi = x$. Then $\nabla \phi = (1,0,0)$ and from equation (3) follows

$$\nabla \times \mathbf{A} = \mathbf{u} - \nabla \phi = (-1 - y, x, 0).$$

We are therefore looking for a function $\mathbf{A} = (A^x, A^y, A^z)$ meeting the conditions

$$\begin{pmatrix} \partial_y A^z - \partial_z A^y \\ \partial_z A^x - \partial_x A^z \\ \partial_x A^y - \partial_y A^x \end{pmatrix} = \begin{pmatrix} -1 - y \\ x \\ 0 \end{pmatrix}.$$

Again, there is a lot of such vectors. We can choose for example $A^z=0$. For the remaining components, we then get $A^x=xz$ a $A^y=(y+1)z$.

Altogether, we've found a scalar potential $\phi = x$ and a vector potential $\mathbf{A} = (xz, (y+1)z, 0)$ that can be used for the decomposition of the vector field \mathbf{u} .