
2. Air properties

17. October 2024

Exercise 1.
A tourist is walking in the mountains with a barometer, measuring the pressure. In the valley, he got
1050 hPa, on the mountain, he got 950 hPa.

� Using the baric step near the ocean surface (i.e., with the highest air density), what is the
estimated height of the mountain?

� The tourist had also a thermometer and he was measuring the average temperature during the
hike, which was 0°C. Using the Babinet formula, what would be the height difference. Refine
the solution using the Laplace formula.

� If the tourist measured the same pressures in summer with the average temperature 20°C, how
high would the mountain be?

Solution:
The baric step near the ocean surface is approximately 8 m on 1 hPa. This would make the height of
800 m for the measured difference of 100 hPa.

The temperature 0°C is 273.15 K. The Babinet formula is

z2 − z1 = 16000
(
1 + 0.00366T

) p1 − p2
p1 + p2

, (1)

which gives the difference approximately 1600 m. The fact that it is greater than the previous estimate
is reasonable, because we used the baric step corresponding to the lowest level only, although the baric
step increases with height.

However, with this height difference, the Babinet formula might get imprecise. The Laplace formula
for the height difference is

z2 − z1 = 8000
(
1 + 0.00366T

)
ln

p1
p2

. (2)

Substituting into it gives the height difference 1601 m, which is not much different to the previous
result.

If the temperature was 20°C higher, the Laplace formula would give the mountain height 1660 m.

Exercise 2.
An eagle wants to eat a mouse. Before diving to the mouse, the eagle cries. Can the mouse be warned
by the sound? Estimate, what time does the sound take until it reaches the mouse.
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Near the ground, the temperature is T1 = 40°C, the eagle flies in the height 50 m above the flat
surface, where the temperature is T2 = 20°C. Assume for simplicity, that the temperature changes
between T1 and T2 at an interface at the height z1 = 10 m. That is, there are two layers of air:
the first layer with temperature T1 starts at ground and goes to the height z1, the second layer with
temperature T2 continues to the height of the eagle with the thickness z2 = 40 m. The horizontal
distance of the eagle to the mouse is m = 5 m.

Think further about the situation with linear vertical temperature profile instead of just two values.
Would this improve the chances for the mouse?

Solution:
If the sound travels to the eagle on the shortest way, it travels the distance√

z22 +

(
z2

z1 + z2
m

)2

in the top layer and the distance √
z21 +

(
z1

z1 + z2
m

)2

in the lower one.

Because the speed of sound depends on the temperature T by the formula

c =
√
κrT ,

where κ = 1.4 and the specific gas constant of air is r = 287 J/kg/K, it is different in both layers. In
particular, for the top layer, it is c2 =

√
1.4× 287× 293 = 343 m/s and c1 =

√
1.4× 287× 313 = 355

m/s in the lower level.

The sound would therefore travel for

t0 =

√
z21 +

(
z1

z1+z2
m
)2

√
κrT1

+

√
z22 +

(
z2

z1+z2
m
)2

√
κrT2

≈ 0.02834 + 0.11716 ≈ 0.14550 s.

However, this is not the shortest time in which the sound arrives to the mouse. Because the sound
is faster in the air with higher temperature, it is more efficient for it to travel greater distance in the
lower level and smaller distance in the upper layer. We therefore need to optimise for the point on
the interface, so that the time is minimal (x in Fig. 1).

In this general case, time before the sound reaches the eagle is

t(x) =

√
z21 + (m− x)2√

κrT1

+

√
z22 + x2

√
κrT2

. (3)

To get a minimal time, we need to find x for which the derivative of the previous expression equals 0.
That leads to equality

0 =
1√
κrT1

m− x√
z21 + (m− x)2

− 1√
κrT2

x√
z22 + x2

.

This however hard to solve analytically for x, which is what we wanted. However, based on the Figure
1, we can see that the fractions in both summands are actually sinuses of angles plotted in the figure.
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Figure 1: Scheme of the problem.

We thus got a law for the sound refraction

sin θ1√
T1

=
sin θ2√

T2

.

This is a law very similar to the refraction of light in optics, with the acoustic index of refraction
n = 1/

√
T .

If T1 is greater than T2 (our situation), implies that θ1 is greater than θ2. That is, if the sound goes
from an environment with lower temperature to the environment with higher temperature, the angle
increases.

Returning back to our problem, we know know the trajectory of the sound. Or at least, we know how
it is refracted - we could not analytically solve the equations for x! This creates a problem for the
calculation of the path. But luckily, the angle at which the eagle looks at the mouse is very small,
allowing for brutal approximation sin θ ≈ θ and tan θ ≈ θ. From that, we can simplify geometric
relationships x = z2 tan θ2 and x = m− z1 tan θ1 and the refraction law to the system of equations:

θ2 =
x

z2
, θ1 =

m− x

z1
, θ1 =

√
T1

T2
θ2.

This system can be easily solved for x:

x = m
z2

z2 + z1

√
T1

T2

≈ 3.97,

which slightly differs from 4 without the temperature modification. Finally, this can be substituted
to the equation (3) to give tmin = 0.02834+ 0.11715 = 0.14549 s. This is by 0.01 ms shorter than our
previous estimate, so the mouse would have more time to flee.

In our case, the situation was however simple with just two temperature levels. With a continuous
distribution, the refraction can lead to the situation that the sound would not be heard at certain
places - a shadow would be created, see Fig. 2. If the mouse sits in the shadow, it would not get any
warning about the eagle.

For comparison, the refractive index of electromagnetic rays depends on the density of air, decreasig
with its decrease. In the usual situation in the atmosphere, when both density and temperature
decrease with height, the rays are slanted in a different way. You will learn more about it at the
subject of our department Propagation of Acoustic and Electromagnetic Waves in Atmosphere.
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Figure 2: Sound propagation with continuous profile.
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