
4. Incompressibility

31. October 2024

Problem 1.
Consider two-dimensional flow described by lagrangian equations

x = Xe−at, y = Y + bt,

where X and Y specify the original position and a and b are positive constants. Check that the
lagrangian and eulerian acceleration coincide.

Solution:
First, we need to get the lagrangian and eulerian velocity. In the lagrangian description, it is

u(X,Y, t) =

(
∂x

∂t
,
∂y

∂t

)
=

(
−aXe−at, b

)
.

In the eulerian description, we first need to express u(X,Y, t) as a function of position x, y, t. Therefore

u(x, y, t) = (−ax, b) .

The acceleration in lagrangian description can be computed as the derivative of the lagrangian velocity
with respect to time:

a(X,Y, t) =
(
a2Xe−at, b

)
In the eulerian description, the acceleration is defined as the material derivative of velocity with respect
to time, therefore

a(x, y, t) =

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
,
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=

(
0 + a2x+ 0, 0

)
,

which is the same as in the lagrangian case.

Problem 2.
Let us have a general velocity field u with the density ρ. Consider a volume V(t) inside the fluid in
time t composed of particles that take the volume V (t0) at the initial time t0. How can be expressed
the fact that the field is incompressible? What does it mean for the velocity? What does it mean for
the density?

Solution:
If the fluid cannot be expressed, we should have V(t) = V (t0) for every time t. Therefore, it must be
also

d

dt

∫
V(t)

1 dv = 0.
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We would like to move the differentiation inside the integral. We however need to rewrite first the
integral so that the domain over which we are integrating does not depend on t. We therefore consider
mapping X that maps initial positionsX of particles to their positions x in time t. That is, x = X (X, t)
and V(t) = X (V (t0), t).

We will denote the Jacobian tensor ∂X (X, t)/∂X of the transformation by F (=deformation gradient).
This tensor describes the change of shape – for example from the Taylor expansion, we have for a 1D
deformation

dx = x2 − x1 = X (X1 + dX, t)−X (X1, t) =
∂X
∂X

(X1, t) dX+O((dX)2).

For 3D, this results in the formula dv = (detF) dV (this follows from the property of determinant
expressing the change of the volume after modifying it by multiplication with the matrix).

In any case, we rewrite the first integral as follows:

d

dt

∫
V(t)

1 dv =
d

dt

∫
V (t0)

detF dV =

∫
V (t0)

d

dt
(detF) dV

From the mathematical point of view, it can be derived that, in the sense of Gateaux derivative,
(∂(det)A/∂A)[B] = (detA)Tr(A−1B), which would finally lead to the equality d(detF)/ dt = (detF)∇·
u, where u is the velocity. The determinant of F can be than used to convert the integral back to the
volume V(t). Therefore, the fluid is incompressible if ∇ · u = 0 (this is true even without the integral
because it holds for any volume V(t)).

However, we can see that also using some physical consideration of the volume changes. If we look
at a volume, it is clear that the volume increases if the particles at the surface move away from each
other and not if they, for example, move in one direction. Therefore, the changes can be described
by integrating the velocity over the surface of the volume. And due to the Gauss theorem, this is
equivalent to the divergence of the velocity:

d

dt

∫
V(t)

1 dv =

∫
S(t)

u · n ds =

∫
V(t)

∇ · u dv,

where n is the normal to the volume surface S(t). The last equality can also be seen without the
knowledge of the Gauss theorem: The divergence would give a value for each point of the volume.
But the values corresponding to the changes inside the volume would cancel out, leaving only the
contribution from the velocity component normal to the boundary. And because the volume integral
”contains one more integration”compared to the surface one, this cancels out the divergence.

All in all, we saw that the incompressibility means that the divergence of the velocity is zero. Let us
look what does this mean in the context of the continuity equation. We will first rederive the equation,
using the formulas derived above. The continuity equation is based on the fact that the mass of given
particles does not change. Therefore, we have

0 =
d

dt

∫
V(t)

ρdv =
d

dt

∫
V (t0)

ρ detF dV =

∫
V (t0)

ρ
d

dt
(detF) +

dρ

dt
detF dV

=

∫
V (t0)

ρ (∇ · u)detF+
dρ

dt
detF dV =

∫
V(t)

ρ (∇ · u) + dρ

dt
dv

The continuity equation is therefore
dρ

dt
= −ρ∇ · u,
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as derived already at the lecture. From this, it follows that the incompressible flow also satisfied
dρ/dt ≡ 0 – the material derivative of density does not change. This is often taken as an equivalent
characterisation of the incompressibility. Nevertheless, if the system does not conserve mass, these
two concepts are not equivalent.

Problem 3.
Consider the flow with velocity u = (x, y, 0). Is this flow incompressible?

Solution:
No, this flow is not incompressible, as its divergence is non-zero.
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