
9. Thermodynamics and waves

12. December 2024

Problem 1.
The atmosphere of Mars is composed mainly of CO2, which has the specific heat at constant pressure
cmp = 844 J/kg/K and the specific heat at constant volume cmv = 655 J/kg/K. The gravity on the
surface is 3.7 m/s−2 and the temperature in the summer near the equator is around 20°C.

� Compute the adiabatic lapse rate and compare it with the lapse rate on the Earth.

� Compute the speed of sound and compare it with the speed of sound on the Earth.

The specific heats for the Earth are cp = 1005 J/kg/K and cv = 718 J/kg/K.

Solution:
The adiabatic lapse rate is defined as

Γ = −dT

dz

Using the condition on adiabaticity cp dT − dp/ρ = 0 with the density ρ and the equation for hyd-
rostatic equilibrium dp/dz = −gρ, this simplifies to

Γ =
g

cp
.

With the conditions on Mars, this is 0.0044 K/m. On the Earth, we get 0.0098 K/m. This means that
on the Earth, the temperature decreases by 1 degree on 100 m, in the neutrally stable atmosphere
on Mars (in hydrostatic equilibrium), it would be only half of a degree on 100 m due to the different
chemical composition and gravity. In reality, the laps rate on Mars is even lower (around 2.5 K/km),
because the suspended dust particles absorb solar radiation and heat the air.

As derived on the lecture, the equations of motion imply the formula for the speed of sound cs =√
γRT . Both the Poissson constant γ and the specific gas constant R in this equation depend on the

chemical composition of the atmosphere. They are defined by R = cp − cv and γ = cp/cv. Therefore,
the speed of sound is given by

cs =

√
cp
cv

(cp − cv)T

For the martian atmosphere with the given temperature, we have the speed of sound 267 m/s. For
the Earth with the same temperature, it would be 343 m/s.

Problem 2.
Look at a particle moving from east to west on the northern hemisphere, that was dislocated to a
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more poleward position by some external perturbation. What will happen then, if we consider the
effect of the Coriolis force in the form F = (fv,−fu, 0), where f = 2Ω sinφ for the latitude φ?
Consider barotropic (density is a function of pressure), horizontal and non-divergent flow, for which
the vorticity equation takes the form d(ζ + f)/dt = 0, where ζ is the relative vorticity.

Solution:
If the particle was moving towards the east, it would describe the motion of the Rossby waves. However,
in this case, it is moving in the opposite direction.

First, we notice that the Coriolis parameter f is 0 at the equator and increases towards the pole.

Second, we note that the Coriolis form in this form is perpendicular to the velocity (F ·v = 0) and for
positive f (Northern hemisphere) it points to the right from the moving particle (for example, when
considering the velocity (−1, 0, 0) – corresponding Coriolis force would be (0, f, 0)).

The particle that was displaced on the northern hemisphere towards north was displaced towards
the pole, the Coriolis effect will therefore increase. From the vorticity equation, this means that the
relative vorticity decreases. This implies that the particle will have larger tendency to rotate in the
negative (anticyclonic, clockwise) direction. It will therfore start a circular motion in the direction
against the flow. After it goes to the furthest point, the parameter f will however start decreasing
and the vorticity would be decreasing, too (it will be still anticyclonic, only smaller).

After some time, it will cross its original trajectory, reach the original latitude and continue with the
same motion type. All in all, it will therefore pursue a circular motion. In contrary to the Rossby
waves, the circular motion will be in the direction against the direction of motion of the particles.

This motion is called easterly waves or waves in the easterlies. Due to the trade winds, they emerge
in the tropical regions as elongated areas of relatively low air pressure (atmospheric troughs) and can
even lead to the formation of tropical cyclones in the north Atlantic and northeastern Pacific.

Problem 3.
Equation for geostrophic equilibrium with friction can be written in the form

f × u = − 1

ρ0
∇p+

1

ρ0

∂τττ

∂z

where f = (f,−f) and τττ is the stress vector. We are considering the Boussinesq aproximation, in
which the density is divided into the constant density ρ0 and a small perturbation.

Over the tropical ocean, we can observe atmospheric cyclons. Compute the effect of such a storm on
the Ekman layer in the infinitely deep ocean.

The stress of air caused by a cyclonic storm can be described as

τττ = −A exp−(r/λ)2(y, x, 0),

where r2 = x2 + y2 and A and λ are constants. The ocean is further affected by the turbulence inside
the ocean flow τττ t = ρ0K∂zu, where K is a constant. Assume that the flow can be divided into a
homogeneous geostrophic component (ū, v̄, 0) and a perturbation corresponding to the Ekman layer.

Solution:
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The equations of motion in components can be written as

−fv = − 1

ρ0
∂xp+

1

ρ0
∂zτx,

fu = − 1

ρ0
∂yp+

1

ρ0
∂zτy,

0 = − 1

ρ0
∂zp+

1

ρ0
∂zτz.

For the geostrophic component, we have equations

−fv̄ = − 1

ρ0
∂xp

fū = − 1

ρ0
∂yp

0 = − 1

ρ0
∂zp

and for the perturbation part therefore holds

−fv′ =
1

ρ0
∂zτx,

fu′ =
1

ρ0
∂zτy,

0 =
1

ρ0
∂zτz.

The equations will be solved inside the ocean with the boundary condition given by the stress from
the storm. Inside the ocean, we thus have only the stress τττ t and the equations are therefore

−f(v − v̄) = K∂2
zu,

f(u− ū) = K∂2
zv,

0 = K∂2
zw,

with the solution satisfying the condition on the ocean surface

z = 0 : ρ0K∂z(u, v, w) = τττ = −A exp−(r/λ)2(y, x, 0).

and on the ocean bottom
z = −∞ : (u, v, w) = (ū, v̄, 0).

For the solution of the set of equations, we will use the notation U = u+ iv, Ū = ū+ iv̄, we multiply
the second equation by the imaginary constant and we sum them. By that, the set is converted into
a single equation

if(U − Ū) = K∂2
zU = K∂2

z (U − Ū)

with the boundary conditions U = Ū on the ocean bottom and ρ0K∂zU = −A exp(−(r/λ)2)(y + ix)
on the surface.

The solution is thus of the shape

U − Ū = C1e
−αz + C2e

αz,
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with the frequency α satisfying the equation α2 = if/K. The De Moivre’s formula implies for a
complex number z = cosϕ+i sinϕ the relation zn = cosnϕ+sinnϕ, and therefore α = (1+i)

√
f/2K.

Constants C1 and C2 can be determined from the boundary conditions. Because of the condition for
the bottom, the constant C1 equals zero. To get C2 we differentiate the solution with respect to z and
we require

ρ0K(−αC1) = −A exp(−(r/λ)2)(y + ix).

The solution is therefore

U = Ū +
A
√
2K

ρ0K(1 + i)
√
f
(y + ix)e−(

r
λ )

2

e−(1+i)
√

f
2K z =

= Ū +

√
2A

ρ0
√
fK

1− i

2
(y + ix)e−(

r
λ )

2−
√

f
2K z

(
cos

√
f

2K
z + i sin

√
f

2K
z

)
=

= Ū +
A

ρ0
√
2fK

e−(
r
λ )

2−
√

f
2K z (y + x+ ix− iy)

(
cos

√
f

2K
z + i sin

√
f

2K
z

)
=

= Ū +
A

ρ0
√
2fK

e−(
r
λ )

2−
√

f
2K z[

(x+ y) cos

√
f

2K
z + (y − x) sin

√
f

2K
z + i

(
(x+ y) sin

√
f

2K
z + (x− y) cos

√
f

2K
z

)]
.

After dividing into the real and the complex component, we get

u = ū+
A

ρ0
√
2fK

e−(
r
λ )

2−
√

f
2K z

[
(x+ y) cos

√
f

2K
z + (y − x) sin

√
f

2K
z

]
,

v = v̄ +
A

ρ0
√
2fK

e−(
r
λ )

2−
√

f
2K z

[
(x+ y) sin

√
f

2K
z + (x− y) cos

√
f

2K
z

]
.

The expression
√

2K/f corresponds to the depth of the Ekman layer. The exponential with the
expression r/λ causes the attenuation of the perturbation in the direction from the storm.
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