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Euler’s equations of isentropic gas dynamics

We consider a compressible inviscid fluid described by

the density ρ(t, x) ∈ R

the velocity field u(t, x) ∈ R
d

the pressure p = p(ρ), where p ∈ C∞, p′ > 0,

whose evolution is governed by the Euler equations

{
∂tρ+ ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇x p(ρ) = 0 ,
(1)

where t ≥ 0 denotes the time variable, x ∈ R
d the space variable.
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Smooth solutions

The Euler equations may be written as a symmetric hyperbolic system.
This allows to solve locally in time the Cauchy problem:

Initial data ρ0 ∈ ρ+Hs(Rd),u0 ∈ Hs(Rd) with s > 1 + d/2.
Existence and uniqueness of a solution in the space
C([0, T ]; ρ +Hs(Rd)) × C([0, T ];Hs(Rd)) [Kato, 1975]

Finite time blow-up of smooth solutions [Sideris, 1985] Formation
of singularities (shock waves).

Global (in time) smooth solutions [Serre, 1997] [Grassin, 1998]

Local smooth solution of the initial boundary value problem under the
slip boundary condition u · ν = 0 (characteristic boundary) [Beirao da
Veiga, 1981]
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Piecewise smooth solutions

The function

(ρ,u) :=

{
(ρ+,u+) if xd > ϕ(t, x1, . . . , xd−1)

(ρ−,u−) if xd < ϕ(t, x1, . . . , xd−1),

is a weak solution of the Euler equations if
(ρ±,u±) is a smooth solution on either sides of the interface
Σ := {xd = ϕ(t, x1, . . . , xd−1)} and
it satisfies the Rankine-Hugoniot jump conditions at Σ:

∂tϕ [ρ] − [ρu · ν] = 0 ,
∂tϕ [ρu] − [(ρu · ν)u] − [p]ν = 0 ,

(2)

ν is a (space) normal vector to Σ; [q] := q+ − q− denotes the jump of
q across Σ.
Σ is an unknown of the problem. Free boundary problem !
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Existence results

Existence of one uniformly stable shock wave [Blokhin, 1981]
[Majda,1983]

Existence of two uniformly stable shock waves [Métivier, 1986]

Existence of one rarefaction wave [Alinhac, 1989]

Existence of sound waves [Métivier, 1991]

Existence of one small shock wave [Francheteau & Métivier, 2000]
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Compressible vortex sheets

(ρ,u) is a contact discontinuity if the Rankine-Hugoniot conditions
(??) are satisfied in the form

∂tϕ = u
+ · ν = u

− · ν ,
p+ = p− .

p monotone gives equivalently

∂tϕ = u
+ · ν = u

− · ν ,
ρ+ = ρ− .

The front Σ := {xd = ϕ(t, x1, . . . , xd−1)} is characteristic with respect
to either side.
Density and normal velocity are continuous across the front Σ.
Jump of tangential velocity ⇒⇒ vortex sheet.
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We want to show the (local) existence of compressible vortex sheets
(contact discontinuities).
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Linear Spectral Stability (Landau, Miles, . . . )

Linearize the Euler equations around a piecewise constant vortex sheet

(ρ,u) =

{
(ρ, v, 0) , if xd > 0,

(ρ,−v, 0) , if xd < 0.

If d = 3, the linearized equations do not satisfy the Lopatinskii
condition (∃ exponentially exploding modes!) ⇒ violent
instability.

If d = 2, and |[u · τ ]| < 2
√

2c(ρ) the linearized equations do not
satisfy the Lopatinskii condition ⇒ violent instability.

If d = 2, and |[u · τ ]| > 2
√

2c(ρ) the linearized equations satisfy
the weak Lopatinskii condition ⇒ weak stability,

where c(ρ) :=
√
p′(ρ) is the sound speed and τ a tangential unit

vector to Σ.
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Formulation of the problem

The interface Σ := {x2 = ϕ(t, x1)} is unknown so that the problem is
a free boundary problem.
In order to work in a fixed domain {y2 > 0} we introduce the
change of variables

(τ, y1, y2) → (t, x1, x2),
(t, x1) = (τ, y1),
x2 = Φ(τ, y1, y2),

where

Φ : {(τ, y1, y2) ∈ R
3} → R,

Φ(τ, y1, 0) = ϕ(t, x1), ∂y2
Φ(τ, y1, y2) ≥ κ > 0.

We write again (t, x1, x2) instead of (τ, y1, y2).
Denote Φ±(t, x1, x2) := Φ(t, x1,±x2) .
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By the Rankine-Hugoniot conditions the boundary matrix of the
system of equations is singular at {x2 = 0}, i.e. the interface is a
characteristic boundary.
The 3 + 3 equations are not sufficient to determine the unknowns
U± := (ρ±,u±) = (ρ±, v±, u±) and Φ±.
We may prescribe that Φ± solve in the domain {x2 > 0} the eikonal
equations

∂tΦ
± + v±∂x1

Φ± − u± = 0 .

This choice has the advantage that the boundary matrix of the system
for U± has constant rank in the whole domain {x2 ≥ 0}
(uniformly characteristic boundary).
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We obtain the first order system:

∂tρ
+ + v+∂x1

ρ+ + (u+ − ∂tΦ
+ − v+∂x1

Φ+)
∂x2

ρ+

∂x2
Φ+

+ ρ+∂x1
v+

+ρ+ ∂x2
u+

∂x2
Φ+

− ρ+ ∂x1
Φ+

∂x2
Φ+

∂x2
v+ = 0 ,

∂tv
+ + v+∂x1

v+ + (u+ − ∂tΦ
+ − v+∂x1

Φ+)
∂x2

v+

∂x2
Φ+

+
p′(ρ+)

ρ+
∂x1

ρ+

−p
′(ρ+)

ρ+

∂x1
Φ+

∂x2
Φ+

∂x2
ρ+ = 0 ,

∂tu
+ + v+∂x1

u+ + (u+ − ∂tΦ
+ − v+∂x1

Φ+)
∂x2

u+

∂x2
Φ+

+
p′(ρ+)

ρ+

∂x2
ρ+

∂x2
Φ+

= 0,

in the fixed domain {x2 > 0}.
(ρ−, v−, u−,Φ−) should solve a similar system.
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The boundary conditions are

Φ+
|x2=0

= Φ−
|x2=0

= ϕ ,

(v+ − v−)|x2=0
∂x1

ϕ− (u+ − u−)|x2=0
= 0 ,

∂tϕ+ v+
|x2=0

∂x1
ϕ− u+

|x2=0
= 0 ,

(ρ+ − ρ−)|x2=0
= 0 , (t, x) ∈ [0, T ] × R

2
+,

that we rewrite in the compact form as

Φ+
|x2=0

= Φ−
|x2=0

= ϕ ,

B(U+
|x2=0

, U−
|x2=0

, ϕ) = 0 .
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We obtain the (non standard) IBVP

∂tU
± +A1(U

±)∂x1
U± +A2(U

±,∇Φ±)∂x2
U± = 0 ,

∂tΦ
± + v±∂x1

Φ± − u± = 0, (t, x) ∈ [0, T ] × R
2
+,

Φ+
|x2=0

= Φ−
|x2=0

= ϕ ,

B(U+
|x2=0

, U−
|x2=0

, ϕ) = 0 , (t, x) ∈ [0, T ] × R
2
+,

(U±,Φ±)|t=0
= (U±

0 ,Φ
±
0 ), x ∈ R

2
+.

P. Secchi (Brescia University) Compressible vortex sheets



Introduction
Compressible vortex sheets

Main result
Related problems

Linear stability: L
2 estimate

Linear stability: Tame estimate in Sobolev norm
Nonlinear stability: Nash-Moser iteration

Theorem (Coulombel, S., 2004, 2008)

Let d = 2 and consider a piecewise constant weakly stable vortex
sheet. Let T > 0 and m ≥ 6.
Consider initial data (U±

0 , ϕ0) that are perturbations in
Hm+15/2(R2

+) ×Hm+8(R) of the piecewise constant vortex sheet.
The initial data have compact support and satisfy suitable
compatibility conditions.
If the perturbation is sufficiently small, then there exists a unique
solution (U±, ϕ) on [0, T ] with initial data (U±

0 , ϕ0). The solution
belongs to the space Hm(]0, T [×R

2
+) ×Hm+1(]0, T [×R).
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The linearized problem

Consider a perturbation of the piecewise constant solution

Ur,l =



ρ
±v
0


 + U̇r,l(t, x),

Φr,l = ±x2 + Φ̇r,l(t, x),

where Ur,l, Φr,l are linked by the Rankine-Hugoniot conditions, U̇r,l

and Φ̇r,l have compact support, and solve the eikonal equations

∂tΦr,l + vr,l∂x1
Φr,l − ur,l = 0 . (3)

Let us consider the linearized equations around Ur,l,Φr,l:

L(Ur,l,Φr,l)W = f in ]0, T [×R
2
+,

B(Ur,l,Φr,l)(W,ψ) = g on ]0, T [×R.
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A priori L
2 estimate

Theorem

Let T > 0. Assume that
(i) the piecewise constant solution U

±
is weakly stable,

(ii) (U
±

+ U̇r,l,±x2 + Φ̇r,l) satisfies the Rankine-Hugoniot conditions
and the eikonal equations (??),
(iii) the perturbation (U̇r,l, Φ̇r,l) has compact support and is
sufficiently small in W 3,∞(]0, T [×R

2
+).

Then there exists a solution of the linearized equations that satisfies
the a priori estimate:

‖W‖2
L2(]0,T [×R

2
+

)
+ ‖W nc

|x2=0
‖2

L2(]0,T [×R) + ‖ψ‖2
H1(]0,T [×R)

≤ C
(
‖f‖2

L2(R+;H1(]0,T [×R)) + ‖g‖2
H1(]0,T [×R)

)
.
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Scheme of the proof

Microlocal analysis of the paralinearized system associated to the
linearized equations.

Determination of the roots of the Lopatinskii determinant, the
poles and the points of non diagonalization of the symbol.

The singularities of the solution are (micro)localized on
bicharacteristic curves propagating from the boundary in the
interior domain.

Despite the loss of regularity, the linearized problem is well-posed
in L2 with source terms in H1. [Coulombel, 2005]
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Paralinearization of the equations.

Using the paradifferential calculus (extension of the pseudodifferential
calculus which allows a low regularity of the symbols), we substitute in
the equations the paradifferential operators (w.r.t. the tangential
variables (t, x1)) and obtain a system of O.D.E. in x2 with symbols
instead of derivatives in (t, x1).

This step essentially reduces to the constant coefficient case.

Elimination of the front.

The projected boundary condition onto a suitable subspace of the
frequency space gives an elliptic equation of order one for the front ψ.
One obtains an estimate of the form

‖ψ‖2
H1

γ(ωT ) ≤ C
(

1
γ2 ‖B(Wnc, ψ)‖2

H1
γ (ωT ) + ‖Wnc

|x2=0
‖2

L2
γ(ωT )

)

+error terms ,

with no loss of regularity with respect to the source terms.

Thus, it is enough to estimate Wnc
|x2=0

.
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Problem with reduced boundary conditions.

The projection of the boundary condition onto the orthogonal subspace
gives a boundary condition involving only Wnc, i.e. without involving ψ.
Thus we are left with the (paradifferential version of the) linear problem
for W

A
r
0 ∂tW

+ + A
r
1 ∂x1

W+ + I2 ∂x2
W+ + A

r
0 C

r W+ = F+ , x2 > 0 ,

A
l
0 ∂tW

− + A
l
1 ∂x1

W− + I2 ∂x2
W− + A

l
0 C

l W− = F− , x2 > 0 ,

ΠM̃W|x2=0
= Π g , x2 = 0 ,

(4)
where diag (0, 1, 1), and Π denotes the suitable projection operator.
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The boundary is characteristic with constant multiplicity.

The problem satisfies a Kreiss-Lopatinski condition in the weak sense and not
uniformly. In fact, the Lopatinski determinant associated to the boundary
condition vanishes at some points in the frequency space (only simple roots).

The proof of the L2 energy estimate is based on the construction of a
degenerate Kreiss’ symmetrizer.

In order to explain the main idea, let us consider for simplicity the
linearization around the piecewise constant solution
(constant coefficients case).
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Then, instead of (??), we have a problem of the form (Ŵ = Fourier
transform in (t, x1))

(τA0 + iηA1)Ŵ + A2
dcW
dx2

= 0 , x2 > 0 ,

β(τ, η)Ŵnc(0) = ĥ x2 = 0.
(5)

Because of the characteristic boundary, the two first equations do not involve
differentiation with respect to the normal variable x2:

(τ + ivrη) Ŵ
+
1 − ic2η Ŵ+

2 + ic2η Ŵ+
3 = 0 ,

(τ + ivlη) Ŵ
−
1 − ic2η Ŵ−

2 + ic2η Ŵ−
3 = 0 .

For Re τ > 0, we obtain an expression for Ŵ+
1 and Ŵ−

1 that we plug in the
other equations.
This operation yields a system of O.D.E. of the form:

d dW nc

dx2
= A(τ, η) Ŵnc , x2 > 0,

β(τ, η)Ŵnc(0) = ĥ , x2 = 0.
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By microlocalization, the analysis is performed in the neighborhood of points
(τ, η) of the following type:

1) Points where A(τ, η) is diagonalizable and the Lopatinskii condition is
satisfied.
By using the classical Kreiss’ symmetrizer we obtain an L2 estimate with no
loss of derivatives.

2) Points where A(τ, η) is diagonalizable and the Lopatinskii condition
breaks down (the Lopatinskii determinant has simple roots).
We construct a degenerate Kreiss’ symmetrizer; this yields an L2 estimate
with loss of one derivative.

3) Points where A(τ, η) is not diagonalizable. In those points, the Lopatinskii
condition is satisfied.

4) Poles of A. At those points, the Lopatinskii condition is satisfied.

We construct a symmetrizer by working on the original system (??).
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Tame estimate in Sobolev norm

Theorem

Let T > 0 and let m ≥ 3 be an integer. Assume that (i) the piecewise

constant solution U
±

is weakly stable,
(ii) (U

±
+ U̇r,l,±x2 + Φ̇r,l) satisfies the Rankine-Hugoniot conditions

and the eikonal equations (??), (iii) the perturbation (U̇r,l, Φ̇r,l) has
compact support and is sufficiently small in H6(]0, T [×R

2
+).

Then the solution of the linearized equations satisfies the a priori
estimate:

‖W‖Hm(]0,T [×R
2
+

) + ‖W nc
|x2=0

‖Hm(]0,T [×R) + ‖ψ‖Hm+1(]0,T [×R)

≤ C
{
‖f‖Hm+1(]0,T [×R

2
+

) + ‖g‖Hm+1(]0,T [×R)+

+
(
‖f‖H4(]0,T [×R

2
+

) + ‖g‖H4(]0,T [×R)

)
‖(U̇r,l, Φ̇r,l)‖Hm+3(]0,T [×R

2
+

)

}
.
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Scheme of the proof

Apply the L2 energy estimates to the tangential derivatives.

Normal derivatives estimated via the equations and a vorticity
equation. No loss of normal regularity inspite of the characteristic
boundary. No need to work in spaces with conormal regularity.
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1) Estimate of tangential derivatives ∂h
t ∂

k
x1
W and the front function ψ by

differentiation of the equations along the tangential directions and application
of the L2 energy estimate given in Theorem 2.
2) Estimate of normal derivatives.
Consider the original non linear equations. On both sides of the interface the
solution is smooth, the interface is a streamline and there is continuity of the
normal velocity across the interface; this suggests to estimate the vorticity on
either part of the front.
We define the ”linearized vorticity”

ξ̇± := ∂x1
u̇± − 1

∂x2
Φr,l

(
∂x1

Φr,l ∂x2
u̇± + ∂x2

v̇±
)
.
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Then

∂tξ̇± + vr,l∂x1
ξ̇± = ∂x1

F±
2 − 1

∂x2
Φr,l

(∂x1
Φr,l∂x2

F±
2 + ∂x2

F±
1 )

+Λr,l
1 ∂x1

U̇± + Λr,l
2 ∂x2

U̇± ,

where
Λr,l

1,2 = Λr,l
1,2(U̇r,l,∇U̇r,l,∇Φ̇r,l,∇2Φ̇r,l).

An energy argument gives the apriori estimate for ξ̇±.
This yields the estimate of the normal derivatives of the characteristic part of
the solution.
This allows to obtain the a priori estimate in the standard Sobolev space
Hm(ΩT ). Otherwise we should work in the anisotropic weighted Sobolev
space Hm

∗ (ΩT ), as for current-vortex sheets in MHD.
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3) Since

∂x2
W±

1 =
1

〈∂x1
Φr,l〉2

{
∂x2

Φr,l (∂x1
u̇± − ξ̇±)

−∂x1
Φr,l (∂x2

Tr,lW
±)3 − (∂x2

Tr,lW
±)2

}
,

we may estimate ∂x2
W±

1 by the previous steps.
The estimate of normal derivatives ∂x2

Wnc of the noncharacteristic part of
the solution follows directly from the equations:

I2 ∂x2
W± = F± − A

r,l
0 ∂tW

± − A
r,l
1 ∂x1

W± − A
r,l
0 C

r,lW± ,

since
I2 := diag (0, 1, 1), Wnc := (W+

2 ,W
+
3 ,W

−
2 ,W

−
3 ).
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Nash-Moser iteration

We use a Nash-Moser iteration where we force the Rankine-Hugoniot
jump conditions and the eikonal equations at each step:

Start from an approximate solution.

Regularize the coefficients of the linearized equations, force the
Rankine-Hugoniot conditions and the eikonal equations.

Solve the linearized equations, for well chosen source terms.

Regularize the new coefficients, force the Rankine-Hugoniot
conditions and the eikonal equations etc.
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The nonlinear problem

L(V,Ψ) := L(V + Ua,Ψ + Φa) − L(Ua,Φa) = fa in ΩT ,

E(V,Ψ) := ∂tΨ + (va + v) ∂x1
Ψ − u+ v ∂x1

Φa = 0 , in ΩT ,

B(V, ψ) := B((V + Ua)|x2=0
, ψ + ϕa) = 0 , on ωT ,

Ψ+
|x2=0

= Ψ−
|x2=0

=: ψ , on ωT .

V (t, ·) = 0, Ψ(t, ·) = 0, ψ(t, ·) = 0 ∀t < 0,

(6)

where
V = (ρ, v, u)T , Ua = (ρa, va, ua)T ,

{
fa := −L(Ua,Φa) , t > 0 ,

fa := 0 , t < 0 .
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The smoothing operators

Theorem (cfr. Hamilton, Francheteau-Métivier)

Let T > 0, γ ≥ 1, and let M ∈ N, with M ≥ 4. There exists a family
{Sθ}θ≥1 of operators

Sθ : F3
γ (ΩT ) × F3

γ (ΩT ) −→
⋂

β≥3

Fβ
γ (ΩT ) ×Fβ

γ (ΩT ) ,

where Fs
γ(ΩT ) :=

{
u ∈ Hs

γ(ΩT )u = 0 for t < 0
}

and a constant C > 0
(depending on M), such that

‖SθU‖Hβ
γ (ΩT ) ≤ C θ(β−α)+ ‖U‖Hα

γ (ΩT ) , ∀α, β ∈ {1, . . . ,M} ,
‖SθU − U‖Hβ

γ (ΩT ) ≤ C θβ−α ‖U‖Hα
γ (ΩT ) , 1 ≤ β ≤ α ≤M ,

‖ d
dθ
SθU‖Hβ

γ (ΩT ) ≤ C θβ−α−1 ‖U‖Hα
γ (ΩT ) ,

(7)

∀α, β ∈ {1, . . . ,M}.
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Theorem (continues...)

Moreover, (i) if U = (u+, u−) satisfies u+ = u− on ωT , then Sθu
+ = Sθu

−

on ωT , (ii) the following estimate holds:

‖(Sθu
+ − Sθu

−)|x2=0
‖Hβ

γ (ωT ) ≤ C θ(β+1−α)+ ‖(u+ − u−)|x2=0
‖Hα

γ (ωT ) ,

∀α, β ∈ {1, . . . ,M}.
There is another family of operators, still denoted Sθ, that acts on functions
that are defined on the boundary ωT , and that enjoy the properties (??),
with the norms ‖ · ‖Hα

γ (ωT ).
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The Nash-Moser iteration

The iterative scheme starts from V0 = 0,Ψ0 = 0, ψ0 = 0.
Assume that Vk,Ψk, ψk are already given for k = 1, . . . , n and verify

Vk = 0, Ψk = 0, ψk = 0 for t < 0,
Ψ+

k = Ψ−
k = ψk on ωT , k = 1, . . . , n.

Given θ0 ≥ 1, let us set θn := (θ20 + n)1/2 and consider the smoothing
operators Sθn

. Let us set

Vn+1 = Vn + δVn, Ψn+1 = Ψn + δΨn, ψn+1 = ψn + δψn.
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We consider the decomposition

L(Vn+1,Ψn+1) − L(Vn,Ψn)

= L
′(Ua + Vn+1/2,Φ

a + Ψn+1/2)(δVn, δΨn) + e′n + e′′n + e′′′n ,

B(Vn+1, ψn+1) − B(Vn, ψn)

= B′(Vn+1/2, ψn+1/2)(δVn, δψn) + ẽ′n + ẽ′′n + ẽ′′′n ,
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where

e′k := L(Ua + Vk+1,Φ
a + Ψk+1) − L(Ua + Vk,Φ

a + Ψk)
−L

′(Ua + Vk,Φ
a + Ψk)(δVk, δΨk),

ẽ′k := B(Vk+1, ψk+1) − B(Vk, ψk) − B′(Vk, ψk)(δVk, δψk)

are the ”quadratic errors” of Newton’s scheme,

e′′k := L
′(Ua + Vk,Φ

a + Ψk)(δVk, δΨk)
−L

′(Ua + Sθk
Vk,Φ

a + Sθk
Ψk)(δVk, δΨk),

ẽ′′k := B′(Vk, ψk)(δVk, δψk) − B′(Sθk
Vk, Sθk

ψk)(δVk, δψk)

are the ”first substitution errors” involving the smoothing operators,
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e′′′k := L
′(Ua + Sθk

Vk,Φ
a + Sθk

Ψk)(δVk, δΨk)
−L

′(Ua + Vk+1/2,Φ
a + Ψk+1/2)(δVk, δΨk),

ẽ′′′k := B′(Sθk
Vk, Sθk

ψk)(δVk, δψk) − B′(Vk+1/2, ψk+1/2)(δVk, δψk)

are the ”second substitution errors” involving the smooth modified state
Vn+1/2, Ψn+1/2, ψn+1/2 satisfying the Rankine-Hugoniot conditions and the
eikonal equations.
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Introducing the new unknown

δV̇n := δVn − δΨn

∂x2
(Ua + Vn+1/2)

∂x2
(Φa + Ψn+1/2)

.

gives

L(Vn+1,Ψn+1) − L(Vn,Ψn) =

= (Ln+1/2 + Cn+1/2)δV̇n +Dn+1/2 δΨn + e′n + e′′n + e′′′n ,

B(Vn+1, ψn+1) − B(Vn, ψn) = B
′
n+1/2(δV̇n, δψn) + ẽ′n + ẽ′′n + ẽ′′′n ,
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where

Ln+1/2 + Cn+1/2 := L(Ua + Vn+1/2,Φ
a + Ψn+1/2)

+C(Ua + Vn+1/2,Φ
a + Ψn+1/2) ,

Dn+1/2 δΨn :=
δΨn

∂x2
(Φa + Ψn+1/2)

∂x2

{
L(Ua + Vn+1/2,Φ

a + Ψn+1/2)
}
,

B
′
n+1/2 = B

′(Ua + Vn+1/2, ϕ
a + ψn+1/2) .
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Let us set
en := Dn+1/2 δΨn + +e′n + e′′n + e′′′n ,

ẽn := ẽ′n + ẽ′′n + ẽ′′′n .

The iteration proceeds as follows.
Given

V0 = 0, Ψ0 = 0, ψ0 = 0,

f0 = S0f
a, g0 = 0, E0 = 0, Ẽ0 = 0,

V1, . . . , Vn, Ψ1, . . . ,Ψn, ψ1, . . . , ψn,

f1, . . . , fn−1, g1, . . . , gn−1,

e0, . . . , en−1, ẽ0, . . . , ẽn−1,

first compute for n ≥ 1

En =

n−1∑

k=0

ek, Ẽn =

n−1∑

k=0

ẽk.
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Then compute fn, gn from
n∑

k=0

fk + Sθn
En = Sθn

fa ,

n∑

k=0

gk + Sθn
Ẽn = 0 ,

and solve the problem

(Ln+1/2 + Cn+1/2)δV̇n = fn in ΩT ,

B
′
n+1/2(δV̇n, δψn) = gn on ωT ,

δV̇n = 0, δψn = 0 for t < 0 ,

finding (δV̇n, δψn).
Then compute δΨn = (δΨ+

n , δΨ
−
n ) from a suitable modification of the

eikonal equations and consequently δVn, Vn+1,Ψn+1, ψn+1.
Finally compute en, ẽn from

L(Vn+1,Ψn+1) − L(Vn,Ψn) = fn + en ,

B(Vn+1, ψn+1) − B(Vn, ψn) = gn + ẽn .
(8)
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Adding (??) from 0 to N gives

L(VN+1,ΨN+1) = SθN
fa + (I − SθN

)EN + eN ,

B(VN+1, ψN+1) = (I − SθN
)ẼN + ẽN .

Because
SθN

→ I as N → +∞
eN → 0, ẽN → 0,

we formally obtain the resolution of the problem from

L(VN+1,ΨN+1) → fa, B(VN+1, ψN+1) → ga.

The rigorous proof of convergence follows from apriori estimates of
Vk,Ψk, ψk proved by induction for every k.
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The existence of weakly stable shock waves

Consider the Euler equations (??) in R
d where d = 2 or 3.

Shock waves solutions to (??) are smooth solutions on either side of a
hypersurface Σ = {xd = ϕ(t, y) , t ∈ [0, T ] , y ∈ R

d−1}, satisfying at Σ the
Rankine- Hugoniot conditions

ρ+ (u+ − v+ · ∇yϕ− ∂tϕ) = ρ− (u− − v− · ∇yϕ− ∂tϕ) =: j ,

j (u+ − u
−) + (p(ρ+) − p(ρ−))

(
−∇yϕ

1

)
= 0 ,

(9)

and the Lax’ shock inequalities for a 1-shock wave (for example)

j > 0 , 0 <
u+ − v+ · ∇yϕ− ∂tϕ

c(ρ+)
√

1 + |∇yϕ|2
< 1 <

u− − v− · ∇yϕ− ∂tϕ

c(ρ−)
√

1 + |∇yϕ|2
. (10)
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Up to Galilean transformations, the planar shock waves have the form

(ρ, v, u) =

{
Ur := (ρr, 0, ur) , if xd > 0,

Ul := (ρl, 0, ul) , if xd < 0,
(11)

where

ρr ur = ρl ul =: j , j =

√
ρr ρl

p(ρr) − p(ρl)

ρr − ρl
, 0 <

ur

c(ρr)
< 1 <

ul

c(ρl)
.
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The (linear) stability of planar shock waves:

Theorem (Majda 1983)

The shock wave (??) is uniformly stable if and only if

u2
r

c(ρr)2

(
ρr

ρl
− 1

)
< 1 .

In particular, when p is a convex function of ρ, this inequality always holds.

Majda constructs shock waves that are close to a uniformly stable planar
shock.
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When
u2

r

c(ρr)2

(
ρr

ρl
− 1

)
> 1 , (12)

the planar shock wave (??) is only weakly stable.
Coulombel 2004: the linearized problem around a variable coefficients small
perturbation of the planar shock (??) satisfies an a priori estimate with a loss
of one tangential derivative.
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Theorem (Coulombel, S., 2008)

Consider a planar shock wave (??) that satisfies the weak stability condition
(??). Let T > 0, and let µ ∈ N be sufficiently large. Then there exists an
integer µ̃ ≥ µ, such that if the initial data (U±

0 , ϕ0) have the form

U±
0 = Ur,l + U̇±

0 ,

with U̇±
0 ∈ H µ̃+1/2(R2

+), ϕ0 ∈ H µ̃+3/2(R), if they are compatible up to
order µ̃− 1, have a compact support, and are sufficiently small, then there
exists a solution U± = Ur,l + U̇±, Φ±, ϕ to (??), (??), (??), on the time

interval [0, T ]. This solution satisfies U̇± ∈ Hµ(]0, T [×R
d−1 × R

+),
ϕ ∈ Hµ+1(]0, T [×R

d−1), and (U̇±, ϕ)|t=0
= (U̇±

0 , ϕ0).
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Subsonic phase transitions in a Van der Waals fluid

Consider the Euler equations (??) in R
d where d = 2 or 3.

Model of isothermal liquid/vapor phase transitions in a van der Waals fluid:

p(ρ) = π(v) :=
RT

v − b
− a

v2
, v := 1/ρ .

Phase transition:
smooth solution of (??) on either side of a hypersurface Σ = {xd = ϕ(t, y)},
that satisfies the Rankine-Hugoniot jump conditions at each point of Σ:

ρ+ (u+ − v+ · ∇yϕ− ∂tϕ) = ρ− (u− − v− · ∇yϕ− ∂tϕ) =: j ,

j (u+ − u
−) + (p(ρ+) − p(ρ−))

(
−∇yϕ

1

)
= 0 ,

j > 0 , 0 <
u± − v± · ∇yϕ− ∂tϕ

c(ρ±)
√

1 + |∇yϕ|2
< 1 ,

(13)

(undercompressive shock waves of type 0, Freistühler 1998,
Lax’ shock inequalities are not satisfied)
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together with the generalized equal area rule
(capillary admissibility criterion):

∫ v+

v−

π(v) dv =
π(v+) + π(v−)

2
(v+ − v−) . (14)

Consider a planar phase transition

(ρ, v, u) =

{
Ur := (ρr, 0, ur) , if xd > 0,

Ul := (ρl, 0, ul) , if xd < 0,
(15)

that satisfies ρr > ρM , ρl < ρm, and the jump conditions

ρr ur = ρl ul =: j , j =

√
ρr ρl

p(ρr) − p(ρl)

ρr − ρl
, 0 <

ur

c(ρr)
< 1 <

ul

c(ρl)
,

∫ vl

vr

π(v) dv =
p(ρr) + p(ρl)

2
(vr − vl) .
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Theorem (Benzoni-Gavage, 1998)

There exist planar phase transitions (??), with ρr,l close enough to ρM,m,
and these planar phase transitions are weakly stable. In any case, the uniform
Lopatinskii condition is not satisfied.
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Theorem (Coulombel, S., 2008)

Consider a planar phase transition (??), as given in Theorem ??. Let T > 0,
and let µ ∈ N be sufficiently large. Then there exists an integer µ̃ ≥ µ, such
that if the initial data (U±

0 , ϕ0) have the form

U±
0 = Ur,l + U̇±

0 ,

with U̇±
0 ∈ H µ̃+1/2(R2

+), ϕ0 ∈ H µ̃+3/2(R), if they are compatible up to
order µ̃− 1, have a compact support, and are sufficiently small, then there
exists a solution U± = Ur,l + U̇±, Φ±, ϕ to (??), (??), (??) on the time

interval [0, T ]. This solution satisfies U̇± ∈ Hµ(]0, T [×R
d−1 × R

+),
ϕ ∈ Hµ+1(]0, T [×R

d−1), and (U̇±, ϕ)|t=0
= (U̇±

0 , ϕ0).
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