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Constitutive relations

Governing equations (incompressible homogeneous material):

div v = 0

ρ
dv
dt

= div T + ρb

T = T>

Constitutive relations (Navier–Stokes), D =def
1
2

(
∇v +∇v>

)
:

T = −pI + 2µD

Different perspective, Tr D = div v = 0, Tδ =def T− 1
3 Tr (T) I:

Tδ = 2µD
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Constitutive relations for non-Newtonian fluids

Standard approach: Stress is an function of kinematical variables.

Tδ = f(D)

Example:

Tδ = 2

(
µ∞ +

µ0 − µ∞
(1 + α |D|2)

n
2

)
D

Pierre J. Carreau. Rheological equations from molecular network theories. J. Rheol., 16(1):99–127, 1972

This approach dominates the standard phenomenological theory of
constitutive relations.
C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Flüge, editor, Handbuch der Physik,

volume III/3. Springer, Berlin, 1965



(a) Polymer dispersion C5G5
(styren/ethyl acrylate copoly-
mer particles in glycol), shear
stress ramp experiment.

(b) Steady-state stress/shear–
rate behaviour; constant applied
shear stress (triangles) and con-
stant applied shear rate (circles),
TTAA/NaSal solution.

Figure: Experimental data for some fluids.

H. M. Laun. Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newton. Fluid Mech.,

54:87–108, 1994

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Tδ,D) = 0

Example:

Tδ = 2

(
µ∞ + (µ0 − µ∞) e

−|Tδ|
τ0

)
D

Gilbert R. Seely. Non-newtonian viscosity of polybutadiene solutions. AIChE J., 10(1):56–60, 1964



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Tδ,D) = 0



Shear stress and shear rate

eŷ

eẑ
ex̂

h

x

z

V = Vtopeẑ

∂p
∂z
eẑ

y

V = −Vtopeẑ

T =

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 D =
1

2

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


σ =def Tŷ ẑ (shear stress) γ̇ =def

dv ẑ

dy
(shear rate)



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Navier−Stokes

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Navier−−Stokes

Multivalued constitutive

relations?

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



One-dimensional implicit type relations
One dimensional data:

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Standard approach (does not work):

Tδ = f(D)

Alternative approach:

f(Tδ,D) = 0 or D = f(Tδ)

Curves:

γ̇ = e−aσ (a1σ + b1) +
(

1− e−bσ
)

(a2σ + b2) (A)

γ̇ =
p1σ

3 + p2σ
2 + p3σ + p4

σ2 + q1σ + q2
(B)

γ̇ =
(
α
(
1 + βσ2

)n
+ γ
)
σ (C)



One dimensional implict type relations – curve fitting



Reconstruction of the tensorial constitutive relation from
one-dimensional data

Task:
f (σ, γ̇) = 0 7→ f (Tδ,D) = 0

Experimental data:

T =

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 D =
1

2

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


σ =def Tŷ ẑ (shear stress) γ̇ =def

dv ẑ

dy
(shear rate)



Reconstruction of the tensorial constitutive relation from
one-dimensional data – curve B

Task:
f (σ, γ̇) = 0 7→ f (Tδ,D) = 0

Fit of one dimensional experimental data:(
σ2 + q1σ + q2

)
γ̇ =

(
p1σ

2 + p2σ + p3

)
σ

Alternatives: (
|Tδ|2 + q1 |Tδ|+ q2

)
D =

(
p1 |Tδ|2 + p2 |Tδ|+ p3

)
Tδ(

T2
δD + DT2

δ

)
δ

+ q̃1(TδD + DTδ)δ + q2D =
(
p4 |Tδ|2 + p3 |Tδ|+ p2

)
Tδ(

T2
δD + DT2

δ

)
δ

+ q1 |Tδ|D + q2D =
(
p4 |Tδ|2 + p2

)
Tδ + p3

(
T2
δ

)
δ



Non-newtonian fluids and normal stress differences

(a) Weissenberg effect. (b) Barus effect.

Normal stress differences:

N1 =def Tẑ ẑ − Tŷ ŷ

N2 =def Tŷ ŷ − Tx̂ x̂



Non-newtonian fluids and normal stress differences

Navier–Stokes, T = −pI + 2µD:Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 = −p

1 0 0
0 1 0
0 0 1

+ µ

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


A non-newtonian model, T = −pI + 2µD + 4µ̃D2:

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 = −p

1 0 0
0 1 0
0 0 1

+ µ

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0



+ µ̃


0 0 0

0
(
dv ẑ

dy

)2
0

0 0
(
dv ẑ

dy

)2





Key question

How to develop reasonable constitutive relations?



General algebraic implicit constitutive relation – restrictions

Incompressible, homogeneous, isotropic fluid:

α1Tδ+α2D+α3

(
T2
δ

)
δ
+α4

(
D2
)
δ
+α5(TδD + DTδ)δ+α6

(
T2
δD + DT2

δ

)
δ

+ α7

(
TδD

2 + D2Tδ

)
δ

+ α8

(
T2
δD

2 + D2T2
δ

)
δ

= 0

Second law of thermodynamics:

T : D ≥ 0

Dynamical admissibility in simple shear flow:

v =
Vtop

h
e ẑ

T. Perlácová and V. Pr̊uša. Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian

fluids. J. Non-Newton. Fluid Mech., 216:13–21, 2015



Summary

I Some experimental data that can not be interpreted using the
standard models Tδ = f(D).

I Implicit constitutive relations f(Tδ,D) = 0 provide a tool how
to develop constitutive models.

I Building a model using one-dimensional data is always a
problem. (Rethinking of experimental procedures is necessary.)

I Construction of a three dimensional fully implicit tensorial
constitutive relations (thermodynamic background).



Nonmonotone response – gradient and vorticity banding

Peter D. Olmsted. Perspectives on shear banding in complex fluids. Rheol. Acta, 47(3):283–300, 2008



Nonmonotone response – gradient and vorticity banding

Jan K. G. Dhont and Wim J. Briels. Gradient and vorticity banding. Rheol. Acta, 47(3):257–281, 2008



Nonmonotone response – gradient and vorticity banding

Jean-François Berret. Rheology of wormlike micelles: Equilibrium properties and shear banding transitions. In

Richard G. Weiss and Pierre Terech, editors, Molecular Gels, pages 667–720. Springer, 2006



Nonmonotone response – gradient and vorticity banding

Jean-François Berret. Rheology of wormlike micelles: Equilibrium properties and shear banding transitions. In

Richard G. Weiss and Pierre Terech, editors, Molecular Gels, pages 667–720. Springer, 2006



Key question

How to develop reasonable constitutive relations?

Design goals:

I Non-monotone response in simple shear flow.

I Viscoelasticity. (Time dependent flows.)

I Normal stress differences. (Three dimensional effects.)



Conclusion

I New mathematical models are needed.

I Implicit constitutive relations are of interest.

I Non-monotone response leads to interesting dynamics.

div v = 0

ρ
dv
dt

= div T + ρb

T = T>

g(Tδ,D) = 0


