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Constitutive relations

Governing equations (incompressible homogeneous material):

divv =20
p% =divT + pb

T=T"
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Governing equations (incompressible homogeneous material):
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Constitutive relations
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Ts = 2uD



Constitutive relations for non-Newtonian fluids

Standard approach: Stress is an function of kinematical variables.
Ts = §(D)

Example:
Ho — Moo
Ts=2 + ,,) D
=2+

Pierre J. Carreau. Rheological equations from molecular network theories. J. Rheol., 16(1):99-127, 1972

This approach dominates the standard phenomenological theory of
constitutive relations.
C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Fliige, editor, Handbuch der Physik,

volume I11/3. Springer, Berlin, 1965
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Figure: Experimental data for some fluids.

H. M. Laun. Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newton. Fluid Mech.,
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Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Ts,D) =0

Example:
ITs!
Ts =2 pioo + (o — ptoc)e ™ | D

Gilbert R. Seely. Non-newtonian viscosity of polybutadiene solutions. AIChE J., 10(1):56-60, 1964



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.
f(Ts,D) =0



Shear stress and shear rate

V= *Vmpes

Ty, 0 O
Ty, T

2z

o =qef Tys (shear stress)




Example

T = o (shear stress)

D = 4 (shear rate, strain rate)
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E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



Example

T = o (shear stress) D ~ 4 (shear rate, strain rate)
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coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



Example

T = o (shear stress)

D ~ ¥ (shear rate, strain rate)
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One-dimensional implicit type relations
One dimensional data:

T ~ o (shear stress) D = 4 (shear rate, strain rate)

Standard approach (does not work):
Ts = §(D)
Alternative approach:
f(Ts,D) =0 or D = {(Ts)
Curves:

Yy =e" (a1o+ b1) + (1 — e_b") (a20 + b2)

5= p10> + p20? + p30 + pa
02+ qio+ q2

v = (a(1+ﬁ02)n+7>0
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Reconstruction of the tensorial constitutive relation from
one-dimensional data

Task:
f(O',’.}/) =0 f(Tﬁa D) =0

Experimental data:

Tee, 0 0 000
dv?
0 T, T, 0 ¥ 9

dv?
dy

o =gef Tys (shear stress) A =def (shear rate)



Reconstruction of the tensorial constitutive relation from
one-dimensional data — curve B

Task:
f((fvﬁ.y) =0~ f(T§aD) =0

Fit of one dimensional experimental data:
(0® + q1o + @) ¥ = (p10® + p20 + p3) o
Alternatives:
(ITs> + a1 ITsl + a2) D = (p1 [Tol” + p2 [Ts| + p3) T
(T30 +DT3), + &(TsD + DTy); + 62D = (pua [Ts + p3[Tsl + p2) Ts

(T30 +DT3); + a1 Ts| D+ 2D = (e [Tsl> + p2) Ts + p3(T3)



Non-newtonian fluids and normal stress differences

(a) Weissenberg effect. (b) Barus effect.

Normal stress differences:

N1 =qer Ty — Ty

N2 —def Tyy/ - Ty

XX



Non-newtonian fluids and normal stress differences

Navier-Stokes, T = —pl 4+ 2uD:

T, 0 0 100 0 0 0
dv?
0 Tyy Tyl =—p (0 1 0 bp )0 0
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A non-newtonian model, T = —pl + 2uD + 4/iD?:
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Key question

How to develop reasonable constitutive relations?



General algebraic implicit constitutive relation — restrictions

Incompressible, homogeneous, isotropic fluid:

a1Ts+02D+a3(T5) s+a(D?) s+as(TsD + DTs)5+ae(T;D + DT3)
+ a7(TsD? + D*Ty) s + ag(T3D* + D*T5), =0
Second law of thermodynamics:
T:D>0
Dynamical admissibility in simple shear flow:

Vio
— P
vV = h ez

T. Perldcova and V. Praga. Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian

fluids. J. Non-Newton. Fluid Mech., 216:13-21, 2015



Summary

» Some experimental data that can not be interpreted using the
standard models Ts = (D).

» Implicit constitutive relations f(Ts,D) = 0 provide a tool how
to develop constitutive models.

» Building a model using one-dimensional data is always a
problem. (Rethinking of experimental procedures is necessary.)

» Construction of a three dimensional fully implicit tensorial
constitutive relations (thermodynamic background).



Nonmonotone response — gradient and vorticity banding

Gradient banding
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Peter D. Olmsted. Perspectives on shear banding in complex fluids. Rheol. Acta, 47(3):283-300, 2008



Nonmonotone response — gradient and vorticity banding

Gradient banding : Vorticity banding :
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Jan K. G. Dhont and Wim J. Briels. Gradient and vorticity banding. Rheol. Acta, 47(3):257—281, 2008



Nonmonotone response — gradient and vorticity banding
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Jean-Frangois Berret. Rheology of wormlike micelles: Equilibrium properties and shear banding transitions. In

Richard G. Weiss and Pierre Terech, editors, Molecular Gels, pages 667—720. Springer, 2006



Nonmonotone response — gradient and vorticity banding

inner wall

outer wall

Jean-Francois Berret. Rheology of wormlike micelles: Equilibrium properties and shear banding transitions. In

Richard G. Weiss and Pierre Terech, editors, Molecular Gels, pages 667—720. Springer, 2006



Key question

How to develop reasonable constitutive relations?

Gradient banding (shear thinning) (shear thickening)

a
7, L T,
/ —
/ S
T
Vorticity banding
— /77%\ ﬁ
\\,, o ,,//4 Tvy //4;/ Ty
A
7

Design goals:
» Non-monotone response in simple shear flow.
» Viscoelasticity. (Time dependent flows.)

» Normal stress differences. (Three dimensional effects.)



Conclusion

» New mathematical models are needed.
» Implicit constitutive relations are of interest.

» Non-monotone response leads to interesting dynamics.

divv =0
p%zdivT—l—pb
T=T"

g(T(;, D) =0



