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French vinaigrette: basic ingredients and instructions

olive oil
vinegar
mustard
salt and pepper

Place mustard, salt, pepper, and vinegar in a bowl.

Whisk to dissolve mustard and salt.

Slowly whisk in olive oil into an emulsion.

Ref. H. Benabdelhalim, D. Brutin: Phase separation and
spreading dynamics of French vinaigrette, Phys. Fluids 2022
[Special Collection: Kitchen Flows]
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If you don’t use mustard...

this is what happens after some time (room temperature)
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If you use mustard...
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Surfactant in fluid mixtures

surfactants lower the surface tension
examples: detergents make the water more “wet” and
grease can be removed, emulsifying agent stabilizes an
emulsion by preventing small droplets to coalesce
(mustard in olive oil + vinegar mixture)
surfactant molecules spontaneously aggregate in stable
groups called micelles which have a strong preference to
occupy sites at the fluid-fluid interfaces
below the critical micelle concentration (CMC), surfactants
adsorb efficiently to the interfaces where their physical
effects become prominent
above the CMC, additionally, spontaneous formation of
micelles occurs in the bulk solution
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Phase field approach: free energy

Ω bdd domain with smooth boundary in Rd , d ∈ {2,3}
φ : Ω× [0,T )→ [−1,1] relative volume fraction difference
between the two fluids
ψ : Ω× [0,T )→ [0,1] volume fraction of the surfactant
free energy

Efree (φ, ψ) = Eφ(φ) + Eψ(ψ) +

∫
Ω

G (φ, ψ) dx

Ref. S. Engblom et al., On Diffuse Interface Modeling and
Simulation of Surfactants in Two-Phase Fluid Flow, Commun.
Comput. Phys. 2013 [and refs. therein]
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Free energies Eφ and Eψ

we postulate

Eφ(φ) =

∫
Ω

(
|∇φ|2

2
+ Fφ(φ)

)
dx

Eψ(ψ) =

∫
Ω

(
|∇ψ|2

2
+ Fψ(ψ)

)
dx

where ε, β > 0 and

Fφ(s) =
Θ

2
[(1 + s) ln(1 + s) + (1− s) ln(1− s)] +

θ1

2
(1− s2)

Fψ(s) =
Θ

2
[s ln s + (1− s) ln(1− s)] +

θ2

2
s(1− s)

with Θ, θ1, θ2 > 0
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Interaction energy density G: first choice

we postulate

G(φ, ψ) =
γ1

2
ψφ2 − γ2ψ|∇φ|2

where γ1, γ2 ≥ 0
with this choice we need to add a regularizing higher-order
term in Eφ, namely,

+σ|∆φ|2

with σ > 0
also, we need to approximate Fφ using a smooth double
well potential

F a
φ (s) =

α

4
(1− s2)2

with α > 0
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First hydrodynamic model

matched densities (ρ1 = ρ2 = 1)
u (volume averaged) fluid velocity
constant mobilities (= 1)



∂tu + (u · ∇)u−∇ · (ν(φ, ψ)Du) +∇π = µφ∇φ+ µψ∇ψ
div u = 0
∂tφ+ u · ∇φ = ∆µφ

µφ = ∆2φ−∆φ+ (F a
φ )′(φ) +∇ · (ψ∇φ)

∂tψ + u · ∇ψ = ∆µψ

µψ = −∆ψ + F ′
ψ(ψ)− |∇φ|2

in Ω× (0,T ), T > 0
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Main results (Di Primio, G., Wu, M3AS 2023)

i.c. + no-slip b.c. for u + no-flux b.c. for φ, ψ, µφ,−∆φ, µψ

existence of a global weak solution if d = 2,3
existence of a local (global) strong solution if d = 3 (d = 3)
continuous dependence estimate (⇒ uniqueness) if d = 2
regularization properties of the weak solution and validity
of the strict separation property for ψ (d = 2)
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Total energy and energy identity

Etot(u(t), φ(t), ψ(t)) +

∫ t

0
‖
√
ν(φ(τ), ψ(τ))Du(τ)‖2dτ

+

∫ t

0

(
‖∇µφ(τ)‖2 + ‖∇µψ(τ)‖2

)
dτ = Etot(u0, φ0, ψ0)

for all t ≥ 0, where

Etot(u, φ, ψ) =

∫
Ω

(
1
2
|u|2 +

σ

2
|∆φ|2 +

|∇φ|2

2
+ F a

φ (φ)

)
dx

+

∫
Ω

 |∇ψ|22
+ Fψ(ψ) +

γ1

2
ψφ2 − γ2ψ|∇φ|2︸ ︷︷ ︸

G(φ,ψ)

 dx
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Approximating the interaction energy density G

Following G.-P. Zhu et al., Thermodynamically consistent
modelling of two-phase flows with moving contact line and
soluble surfactants, JFM 2019

−γ2ψ|∇φ|2 ≈ −
γ3

4
ψ(1− φ2)2

where γ3 > 0
so that

Ga(φ, ψ) =
γ1

2
ψφ2 − γ3

4
ψ(1− φ2)2

with this choice we no longer need the regularizing
higher-order term in Eφ
also, we no longer need to approximate Fφ with a smooth
double well potential
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Second hydrodynamic model

unmatched densities (following Abels, Garcke, Grün,
M3AS 2012)

ρ(φ) =
ρ1 − ρ2

2
φ+

ρ1 + ρ2

2
, J = −ρ1 − ρ2

2
mφ(φ)∇µφ



∂t (ρ(φ)u) + div (u⊗ (ρ(φ)u + J))− div (ν(φ, ψ)Du) +∇π
= µφ∇φ+ µψ∇ψ
div u = 0
∂tφ+ u · ∇φ = div (mφ(φ)∇µφ)

µφ = −∆φ+ F ′
φ(φ) + ∂φGa(φ, ψ)

∂tψ + u · ∇ψ = div (mψ(ψ)∇µψ)

µψ = −∆ψ + F ′
ψ(ψ) + ∂ψGa(φ, ψ)

in Ω× (0,T )
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Main results (G., Ouyang, Wu, in progress)

i.c. + no-slip b.c. for u + no-flux b.c. for φ, ψ, µφ, µψ
non-degenerate or degenerate mobilities
existence of a global weak solution if d = 2,3 with a
reaction term of Oono type in the CH eq. for φ

σ1(φ)
(
φ− c

)
+ σ2

(
φ− φ

)
where σ1, σ2 ≥ 0, c ∈ (−1,1), and φ stands for the integral
mean of φ
non-degenerate mφ: σ1 can be a positive constant
degenerate mφ: σ1 must properly vanish at ±1
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Total energy and energy identity

Etot(u(t), φ(t), ψ(t)) +

∫ t

0
‖
√
ν(φ(τ), ρ(τ))Du(τ)‖2dτ

+

∫ t

0

(
mφ(φ(τ))‖∇µφ(τ)‖2 + mψ(ψ(τ))‖∇µψ(τ)‖2

)
dτ

= Etot(u0, φ0, ψ0)

for all t ≥ 0, where

Etot(u, φ, ψ) =

∫
Ω

(
ρ(φ)

2
|u|2 +

|∇φ|2

2
+ Fφ(φ)

)
dx

+

∫
Ω

(
|∇ψ|2

2
+ Fψ(ψ) + Ga(φ, ψ)

)
dx
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Proofs: scheme

The proofs are based on suitable adaptations of the ones
devised in Abels, Depner, Garcke (JMFM 2012 and AIHP 2013)

implicit time discretization scheme for the nondegenerate
mobilities
approximating the degenerate mobilities
approximating the mixing entropies in such a way that the
approximations of φ and ψ still take their values in [−1,1]
and [0,1], respectively
use the previous result (non-degenerate mob.) to get the
existence of an approximate solution
pass to the limit w.r.t. the regularization parameters by
extraction and compactness
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Some open issues

1st model: convergence to equilibrium? Fφ singular?
2nd model (non-deg. mob.): additional results (e.g.,
well-posedness if d = 2, local strong sols. if d = 3)
2nd model (deg. mob.): more general source terms in the
CH eq. for φ
nonlocal models for the mixture and/or the surfactant (deg.
mob.: more chances to go beyond the existence of a weak
soln.)
replacing Cahn-Hilliard eqs. with conserved Allen-Cahn
eqs. (X. Jiang, CMAME 2021)
dynamic boundary conditions (G. Zhu et al., JFM 2019,
2nd model)
stochastic models (T. Tachim-Medjo, DCDS 2024, 1st
model)
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THANK YOU
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