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Motivation

Modeling each fluid component of a mixture is essential in a wide range of applications in the
chemical industry, geosciences, combustion, battery modeling, separation processes, etc.

Unfortunately, numerical computation of the velocity and concentration of every component, as
well as other values of interest such as temperature and pressure, becomes expensive quickly.

Our goal

Develop finite element discretisations and scalable solvers for a wide variety of multicomponent
flows.

We would like to account for diffusive, convective, non-ideal mixing, thermal, pressure
and electrochemical effects for steady and transient multicomponent flows.

Scalable solvers: parallelisable on modern computer hardware.
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Onsager–Stefan–Maxwell equations

Section 2

Onsager–Stefan–Maxwell equations
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Onsager–Stefan–Maxwell equations

Let’s start with the simplest case of the OSM equations: multicomponent diffusion of ideal
gaseous mixtures. Furthermore, we assume isothermal, isobaric, and steady-state conditions.

Steady, isothermal, isobaric, and ideal gaseous OSM problem

For given vbulk and {ri}ni=1, find {ci}ni=1 and {vi}ni=1 such that

−ci∇µi =
∑
j

Mijvj ∀i ∈ {1, . . . , n}, (⋆)

∇ · (civi) = ri ∀i ∈ {1, . . . , n},

vbulk =

∑
iMicivi
ρ

, (⋆⋆)

where ρ :=
∑n

i=1Mici is the density and M is the Onsager transport matrix defined as

Mij =

{
−RTcicj

DijcT
if i ̸= j,∑n

k ̸=i
RTcick
DikcT

if i = j.
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Onsager–Stefan–Maxwell equations

We add the mass-average constraint (⋆⋆) to (⋆) as an augmentation term, and rewrite the
OSM equations in terms of the mass fluxes {Ji}ni=1 and chemical potentials {µi}ni=1

Ji = Micivi ∀i ∈ {1, . . . , n},
µi = eci ∀i ∈ {1, . . . , n}.

We can derive a weak formulation with Ji ∈ H(div) and µi ∈ L2 for each i, and discretise
using conforming FEM with arbitrary polynomial degree.

For a Picard linearisation of the OSM problem we can prove continuous well-posedness and
discrete well-posedness and quasi-optimality. Empirically, the Picard linearisation can be solved
at each step of a fixed point iteration to obtain a solution to the fully nonlinear problem.

In practice, we employ Newton’s method because of its superior convergence.
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Onsager–Stefan–Maxwell equations

At each step of Newton’s method we have to solve a linear system.

We can do this with
Gaussian elimination, but the computational complexity is O(N3) and we would also quickly
run out of RAM. The same problems persist for Gaussian elimination for sparse linear systems.

Hence, we need to use an iterative solver. We start with a stationary iterative method for
Ax = b with splitting A = M −N

Mxk+1 = Nxk + b.

where M is usually chosen to resemble A but easier to solve.

The stationary iterative method can be improved by the Generalised Minimum RESidual
method (GMRES) which finds yk+1 ∈ span({x0, . . . , xk+1}) such that the residual
∥b−Ayk+1∥2 is minimised.

In this setting, GMRES is referred to as the iterative solver and the stationary iterative method
is the preconditioner. This talk is essentially about good choices for M .
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Onsager–Stefan–Maxwell equations

At each step of Newton’s method we have to solve a linear system with the Jacobian. To
determine a good choice for M we should look at the matrix structure of the Jacobian

J =

J̄ µ̄( )
τ̄ A00 A01

w̄ A10

,

where we have used bar notation to denote n-tuples, e.g. J̄ = (J1, . . . , Jn), and τ̄ and w̄ are
corresponding test functions.

We will explore two preconditioning approaches:

▶ monolithic preconditioner, i.e. M considers J completely,

▶ block preconditioner, i.e. M =

(
D1

D2

)
and D1, D2 are solved iteratively.

Goal

The preconditioner exhibits bounded GMRES iterations for arbitrary mesh refinements and
polynomial degree, as well as parallelisation of its most costly operation.
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Monolithic multigrid preconditioner

Section 3

Monolithic multigrid preconditioner
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Monolithic multigrid preconditioner

Elliptic problems: given a current iterate xk for Ax = b, the simplest stationary iterative
methods, e.g. Richardson, Jacobi, Gauss–Seidel iteration, only reduce the frequencies similar
to the mesh size that are present in the error.

Multigrid moves the iterate between meshes with different refinements to reduce all
frequencies.

Often, Gaussian elimination is used on the coarsest mesh and a parallel stationary iterative
method on the finer meshes. Empirically multigrid has proven to be a powerful solver for
a wide variety of problems.
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Monolithic multigrid preconditioner

Solver diagram for the monolithic multigrid preconditioner.

Newton’s method

Preconditioned GMRES

Multigrid

Coarse grid solver

Gaussian elimination

Fine grid solver

1 Vertex Vanka iteration

Gaussian elimination

Vertex Vanka patch for RT1-DG0

discretisation.
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Monolithic multigrid preconditioner

Manufactured test problems: preconditioned GMRES iteration counts for various mesh
refinements and polynomial degrees.

refinement\degree 1 2 3 4

0 1.0 1.0 1.0 1.0
1 10.0 7.0 6.5 7.0
2 11.67 7.33 7.0 7.0
3 12.0 6.5 7.5 7.0

Coarse 4× 4 unit square mesh.

refinement\degree 1 2 3 4

0 1.0 1.0 1.0 1.0
1 8.67 6.67 6.0 6.0
2 11.33 7.5 7.5

Coarse 4× 4× 4 unit cube mesh.
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Monolithic multigrid preconditioner

Gas separation chamber: mole fraction of helium
in ternary mixture of He-Ar-Kr in the presence of a
temperature gradient.

Human airways: concentration of oxygen in
mixture of H2O-O2-CO2-N2.
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Augmented Lagrangian block preconditioner

Section 4

Augmented Lagrangian block preconditioner
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Augmented Lagrangian block preconditioner

The augmented Lagrangian preconditioning approach adds κ(∇ · (civi)− ri,∇ · τi) where
κ > 0 to the weak formulation of (⋆). If ∇ · (civi) = ri can be satisfied exactly in the finite
element space for each i, e.g. when ri = 0 for each i, then the solution doesn’t change.

However, the Jacobian changes to

J =

J̄ µ̄( )
τ̄ Aκ

00 A01

w̄ A10

≈
J̄ µ̄( )

τ̄ κ(∇ · J̄ ,∇ · τ̄) (µ̄,∇ · τ̄)
w̄ (∇ · J̄ , w̄)

.

For large κ the augmented Lagrangian term dominates the top left block of the Jacobian. It
can be shown that a good approximation for the Schur complement is S̃ = (µ̄, w̄). Hence we
will use the preconditioner

M =

(
Aκ

00

Ŝ

)
.
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Augmented Lagrangian block preconditioner

Solver diagram for the augmented Lagrangian preconditioner.

Newton’s method

Preconditioned GMRES

Block preconditioner

Multigrid on Aκ
00 block

Coarse grid solver

Gaussian elimination

Fine grid solver

1 Vertex star iteration

Gaussian eliminationŜ block

Gaussian elimination

Vertex star patch for RT1

discretisation.

K. Knook (Oxford) Scalable Solvers for Multicomponent Flows February, 2025 15 / 19



Augmented Lagrangian block preconditioner

Solver diagram for the augmented Lagrangian preconditioner.

Newton’s method

Preconditioned GMRES

Block preconditioner

Multigrid on Aκ
00 block

Coarse grid solver

Gaussian elimination

Fine grid solver

1 Vertex star iteration

Gaussian eliminationŜ block
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Augmented Lagrangian block preconditioner

Manufactured test problems: preconditioned GMRES iteration counts for various mesh
refinements and polynomial degrees. κ = 10.

refinements \degree 1 2 3 4

1 9.75 9.75 9.75 9.75
2 20.67 20.5 23.5 20.5
3 21.67 19.0 23.0 19.0
4 20.5 18.5 20.5 18.0

Coarse 4× 4 unit square mesh.

refinements \degree 1 2 3 4

0 10.0 20.5 24.5 28.25
1 47.4 30.33 25.33 22.0
2 41.5 26.0 25.33

Coarse 4× 4× 4 unit cube mesh.
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Conclusions

Section 5

Conclusions
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Conclusions

We have two scalable solvers for multicomponent diffusion of ideal gaseous mixtures.

Monolithic multigrid preconditioner:

▶ large patch problems,

▶ straightforward implementation.

Vertex Vanka patch for RT1-DG0 discretisation.

Augmented Lagrangian preconditioner:

▶ small patch problems,

▶ more challenging implementation.

Vertex star patch for RT1 discretisation.

In the future we hope to extend these preconditioners to more multicomponent problems!
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Scalable Solvers for Multicomponent Flows

Thank you for listening!
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