
ANALYSIS OF VISCOELASTIC FLUIDS
STABILITY NEAR EQUILIBRIUM

MICHAL BATHORY
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY
PRAGUE
SEPTEMBER 26 2024



COUETTE EXPERIMENT

Stability of a (steady) flow⇔ its resistance to finite perturbations.
The flow is induced by the movement of a solid boundary.
Let the fluid be viscous 𝜈 > 0 and incompressible div v = 0.
Well known example of this setting is the Couette experiment
with a fluid between two rotating cylinders.

v =vinner

v =vouter

v =vouter

The basic axisymmetric steady state given by

v𝜃(𝑟) = 𝐶1𝑟 + 𝐶2𝑟−1

is stable if v𝑜𝑢𝑡𝑒𝑟 is not much smaller than v𝑖𝑛𝑛𝑒𝑟 and if the annulus is not too thin.
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TAYLOR VORTICES

In 1922, Sir G. I. Taylor described necessary & sufficient criteria for the
transition of the basic flow to the vortex flow.
Assuming that the disturbance is symmetric (𝜕𝜃 ≡ 0), he obtained the
explicit solutions in terms of the Fourier series of the Bessel functions:

𝑓(𝑟) =
∞
∑
𝑠=1

𝛼𝑠[𝑓]𝐵(𝑘𝑠𝑟)

Impressive, but probably useless in more general settings, such as
▶ Complex fluids
▶ Irregular geometries

Our aim is to provide just sufficient criteria for stability, but for
viscoelastic fluids and in general domains.
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NAVIER-STOKES CASE
Suppose that v (and 𝑝) is a solution of

div v = 0
𝜕𝑡v + v ⋅ ∇v − 𝜈Δv + ∇𝑝 = 0, 𝜈 > 0

v ∣𝜕Ω = w𝐷 (w𝐷 ⋅ n = 0)

corresponding to some initial datum v(0) = v0, and let u be the steady state solution of the
same system. Subtracting the equations and testing with the difference v − u leads to

1
2𝜕𝑡∫Ω

|v − u|2 + 𝜈∫
Ω
|∇(v − u)|2 = −∫

Ω
(v − u) ⋅ ∇u ⋅ (v − u) ≤ ‖∇u‖∞‖v − u‖22

We observe:
Exponential stability if ‖∇u‖∞ is sufficiently small (depending on 𝜈 and Poincaré
constant of Ω).
Does not need 𝜕𝑡u = 0.
Works also for weak solutions, provided they satisfy the energy inequality.
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EQUATIONS FOR VISCOELASTIC FLUIDS

The momentum equation gets an additional term:

𝜕𝑡v + v ⋅ ∇v − 𝜈Δv + ∇𝑝 = 2div(𝔹)

and the unknown elastic stress tensor 𝔹 solves the Oldroyd-B/Giesekus equation

𝜕𝑡𝔹 + v ⋅ ∇𝔹 + 𝛿1(𝔹 − 𝕀) + 𝛿2(𝔹2 − 𝔹) − 𝜆Δ𝔹 = ∇v𝔹 + 𝔹∇𝑇v, 𝛿1, 𝛿2 > 0, 𝜆 ≥ 0
𝜆n ⋅ ∇𝔹 ∣𝜕Ω = 0

The 𝛿1, 𝛿2-terms model an elastic damping.
The stress diffusion term is optional. It simplifies the analysis, but the corresponding
equation for 𝔹−1 is “lost”. Both models 𝜆 = 0 and 𝜆 > 0 seem physically relevant.
Existence of global-in-time, three-dimensional solution for this system is known if
𝛿1 = 0 and 𝜆 = 0, see [Bulíček, Málek, Los; 2024].
One has to ensure that the matrix 𝔹 is positive definite.
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COUETTE FOR VISCOELASTIC FLOWS

Allowing the fluid to store elastic energy makes the Couette experiment even more
interesting.
The initial perturbation can now be encoded not only in v(0), but also in 𝔹(0).

Nice illustrations can be found in [Dostalík, Průša, Tůma; 2019]:
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THE LYAPUNOV FUNCTIONAL

We need a way to measure distance of two solutions, say (v, 𝔹) and (u, 𝔸).
The naive guess

𝐿𝑛𝑎𝑖𝑣𝑒 = ∫
Ω
|v − u|2 +∫

Ω
|𝔹 − 𝔸|2

does not work since in its time derivative, cubic terms like (∇v − ∇u)(𝔹 − 𝔸)2 coming
from the objective derivative will spoil the estimate.
A more natural candidate is

𝐿 = 12 ∫Ω
|v − u|2 +∫

Ω
𝜓(𝔹𝔸−1),

where 𝜓 is the free (elastic) energy function
𝜓(𝕐) = tr(𝕐 − 𝕀) − ln det 𝕐, 𝕐 > 0.

Function 𝜓 is convex, non-negative and 𝜓(𝕀) = 0.
The correct “testing procedure” follows from the form of the time derivative

𝜕𝑡𝜓(𝔹𝔸−1) = 𝜕𝑡𝔹 ⋅ (𝔸−1 − 𝔹−1) + 𝜕𝑡𝔸 ⋅ (𝔸−1 − 𝔸−1𝔹𝔸−1)
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STABILITY OF SMOOTH SOLUTIONS

This is the approach taken in [Dostalík, Průša, Tůma; 2019] and it leads to the identity
d
d𝑡 ∫Ω

(12|v − u|
2 + 𝜓(𝔸−1𝔹))

⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝐿

+𝜈∫
Ω
|∇(v − u)|2 + 𝛿1∫

Ω
|𝔸−1𝔹 1

2 − 𝔹− 12 |2 + 𝛿2∫
Ω
|𝔸− 12𝔹 − 𝔸 1

2 |2

= −∫
Ω
(v − u) ⋅ ∇u⎵

small
⋅(v − u) + 2∫

Ω
(v − u) ⋅ ∇𝔸− 12⎵

small
⋅(𝔸− 12𝔹 − 𝔸 1

2 ) + 2∫
Ω
∇(v − u) ⋅ (𝔸− 12 − 𝔸 1

2 )⎵
small

(𝔸− 12𝔹 − 𝔸 1
2 )

Conclusion: if the steady solution (u, 𝔸) is such that ‖∇u‖∞, ‖𝔸 − 𝕀‖∞ and ‖∇𝔸‖∞ are
sufficiently small, then d

d𝑡𝐿 ≤ 0.
However, this was done under additional assumptions:
▶ 𝜕𝑡u = 0, 𝜕𝑡𝔸 = 0,▶ 𝜆 = 0,
▶ The perturbed solution (v, 𝔹) is smooth.

We remove all these assumptions and also show that 𝐿 decays exponentially fast.
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STRESS-DIFFUSIVE CASE 𝜆 > 0

To handle the stress-diffusion term −𝜆Δ𝔹, we derive the following identity

∇𝔹 ⋅ ∇(𝔸−1 − 𝔹−1) + ∇𝔸 ⋅ ∇(𝔸−1 − 𝔸−1𝔹𝔸−1)
= ∇𝔹 ⋅ ∇(𝔸−1 − 𝔹−1) − ∇𝔸 ⋅ 𝔸−1∇𝔹𝔸−1 − 2∇𝔸 ⋅ ∇𝔸−1𝔹𝔸−1 + ∇𝔸 ⋅ ∇𝔸−1

= |𝔹 1
2∇𝔹−1𝔹 1

2 |2 − 2𝔹 1
2∇𝔹−1𝔹 1

2 ⋅ 𝔹 1
2∇𝔸−1𝔹 1

2 + 2𝔸∇𝔸−1 ⋅ ∇𝔸−1𝔹 + ∇𝔸 ⋅ ∇𝔸−1

= |𝔹 1
2∇(𝔸−1 − 𝔹−1)𝔹 1

2 |2 − 𝔹∇𝔸−1 ⋅ ∇𝔸−1𝔹 + 2𝔸∇𝔸−1 ⋅ ∇𝔸−1𝔹 − 𝔸∇𝔸−1 ⋅ ∇𝔸−1𝔸
= |𝔹 1

2∇(𝔸−1 − 𝔹−1)𝔹 1
2 |2 + ∇𝔸−1𝔹 ⋅ (𝔸 − 𝔹)∇𝔸−1 + 𝔸∇𝔸−1 ⋅ ∇𝔸−1(𝔹 − 𝔸)

= |𝔹 1
2∇(𝔸−1 − 𝔹−1)𝔹 1

2 |2 − ∇𝔸−1(𝔹 − 𝔸) ⋅ (𝔹 − 𝔸)∇𝔸−1

= |𝔹 1
2∇(𝔸−1 − 𝔹−1)𝔹 1

2 |2 − ∇𝔸−1𝔸 1
2⎵

small
(𝔸− 12𝔹 − 𝔸 1

2 ) ⋅ (𝔹𝔸− 12 − 𝔸 1
2 )⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

Giesekus 𝛿2 term
𝔸 1

2∇𝔸−1⎵
small

.
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THE EXPONENTIAL DECAY
Using the smallness assumptions on (u, 𝔸), we can arrive at the estimate
d
d𝑡 ∫Ω

(12|v − u|
2 + 𝜓(𝔸−1𝔹))

⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝐿

+𝜈2 ∫Ω
|∇(v − u)|2 + 𝛿1∫

Ω
|𝔸−1𝔹 1

2 − 𝔹− 12 |2 +
𝛿2
2 ∫

Ω
|𝔸− 12𝔹 − 𝔸 1

2 |2 ≤ 0.

We observe that
𝜓(𝔸−1𝔹) ≤ 𝜓(𝔸−1𝔹) + 𝜓(𝔹−1𝔸)

= tr(𝔸−1𝔹 − 𝕀) − ln det(𝔸−1𝔹) + tr(𝔹−1𝔸 − 𝕀) − ln det(𝔹−1𝔸)
= (𝔹 − 𝔸) ⋅ (𝔸−1 − 𝔹−1) = (𝔹 1

2 − 𝔸𝔹− 12 ) ⋅ (𝔸−1𝔹 1
2 − 𝔹− 12 ) = 𝔸(𝔸−1𝔹 1

2 − 𝔹− 12 ) ⋅ (𝔸−1𝔹 1
2 − 𝔹− 12 )

≤ |𝔸||𝔸−1𝔹 1
2 − 𝔹− 12 |2

Therefore, if 𝛿1 > 0, then there exists 𝜀 > 0 such that
d
d𝑡𝐿 + 𝜀𝐿 ≤ 0,

leading to the exponential decay of 𝐿.
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STABILITY OF WEAK SOLUTIONS

We want to prove

d
d𝑡 ∫Ω

(12|v − u|
2 + 𝜓(𝔸−1𝔹)) + 𝜈∫

Ω
|∇(v − u)|2 + 𝛿1∫

Ω
|𝔸−1𝔹 1

2 − 𝔹− 12 |2 + 𝛿2∫
Ω
|𝔸− 12𝔹 − 𝔸 1

2 |2

≤ −∫
Ω
(v − u) ⋅ ∇u ⋅ (v − u) + 2∫

Ω
(v − u) ⋅ ∇𝔸− 12 ⋅ (𝔸− 12𝔹 − 𝔸 1

2 ) + 2∫
Ω
∇(v − u) ⋅ (𝔸− 12 − 𝔸 1

2 )(𝔸− 12𝔹 − 𝔸 1
2 )

for weak solutions, but the standard energy estimates only contain 𝜕𝑡𝜓(𝔹) and 𝜕𝑡𝜓(𝔸) (or
𝜕𝑡𝜓(𝔸−1)).

Hence, we would really like to replace (u, 𝔸) by some generic (smooth) test function (w, 𝕐).

Can we do that?
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RELATIVE ENERGY INEQUALITY
Yes, we can construct a weak solution such that, for all smooth w and 𝕐, there holds
d
d𝑡 ∫Ω

(12|v −w|
2 + 𝜓(𝕐−1𝔹)) + 𝜈∫

Ω
|∇(v −w)|2 + 𝛿1∫

Ω
|𝕐−1𝔹 1

2 − 𝔹− 12 |2 + 𝛿2∫
Ω
|𝕐− 12𝔹 − 𝕐 1

2 |2

≤ −∫
Ω
(v −w) ⋅ ∇w ⋅ (v −w) + 2∫

Ω
(v −w) ⋅ ∇𝕐− 12 ⋅ (𝕐− 12𝔹 − 𝕐 1

2 ) + 2∫
Ω
∇(v −w) ⋅ (𝕐− 12 − 𝕐 1

2 )(𝕐− 12𝔹 − 𝕐 1
2 )

−∫
Ω
(𝜕𝑡w +w ⋅ ∇w − 𝜈Δw − 2div 𝕐) ⋅ (v −w)

+∫
Ω
(𝜕𝑡𝕐 +w ⋅ ∇𝕐 + 𝛿1(𝕐 − 𝕀) + 𝛿2(𝕐2 − 𝕐) − ∇w𝕐 − 𝕐(∇w)𝑇 ) ⋅ (𝕐−1 − 𝕐−1𝔹𝕐−1)

The choice w = w𝐷 and 𝕐 = 𝕀 recovers the standard energy inequality for (v, 𝔹).
The choice w = u and 𝕐 = 𝔸 gives the stability (or uniqueness) result.
The choice w = v + 𝜀𝜑, 𝕐 = (𝔹−1 + 𝜀Φ)−1 and limits 𝜀 → 0± recover the equations for v
and 𝔹. Hence, a relative energy inequality itself represents a “dual” weak formulation.

Open question: Does energy inequality imply relative energy inequality?
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THE RESULT

Theorem (to appear soon)
For any initial data v0 ∈ 𝐿

2
n,div(Ω) and 𝔹0 ∈ 𝐿1(Ω) positive definite such that 𝜓(𝔹0) ∈ 𝐿1(Ω),

there exists a global-in-time, three-dimensional weak solution (v, 𝔹) to the system,
satisfying also the relative energy inequality and fulfilling the boundary condition v ∣𝜕Ω= w𝐷.

Corollary
There exists 𝛿 > 0 such that for any weak solution (u, 𝔸) fulfilling the boundary condition
u ∣𝜕Ω= w𝐷 and the smallness condition

sup
(0,∞)×Ω

(|∇u| + |𝔸 − 𝕀| + |∇𝔸|) ≤ 𝛿,

there exists 𝜀 > 0, such that

𝐿(𝑡) ≤ 𝑒𝜀(𝑡0−𝑡)𝐿(𝑡0), 𝑡 ≥ 𝑡0, where 𝐿 = ∫
Ω
(12|v − u|

2 + 𝜓(𝔸−1𝔹)).
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