
INITIAL VALUE PROBLEMS BY SPACE-TIME
CONVEX OPTIMIZATION

Yann Brenier, CNRS, LMO, Université Paris-Saclay
and CNRS-INRIA team "PARMA"

MODELLING, PDE ANALYSIS AND COMPUTATIONAL
MATHEMATHICS IN MATERIAL SCIENCES

MPDE 2024
UNIVERSITAS CAROLINA, UNIVERZITA KARLOVA

23-27 Sept 2024

YB (CNRS Orsay and INRIA PARMA) IVP BY SPACE-TIME OPTIMIZATION PRAHA 26 SEPT 24 1 / 19



SOLVING IVP BY CONVEX MINIMIZATION

Solving initial value problems by space-time convex
minimization is an old idea going back to the least
square method for LINEAR equations.

Since 2018, I have worked out this idea for a large
class of NONLINEAR PDEs,
see also D. Vorotnikov (’22) and A. Acharya (’23).
Ref.: Y.B. CMP 2018 and Lecture notes "Hidden Convexity" Y.B. ’20, hal-02928398.

I will start with the simplest example: the (quadratic)
porous medium equation. Then, I will discuss the
challenging case of the Einstein equation in vacuum
with a cosmological constant revisited as a matrix
valued version of the isothermal Euler equations.
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I. Case of the quadratic porous medium equation:

(QPME) ∂tu = ∆u2/2, u = u(t , x) ≥ 0, t ≥ 0, x ∈ Td ,

which is nothing but the macroscopic limit of the
properly rescaled (deterministic) system of particles:

dXk

dt
= ϵ−1

∑
j=1,N

(Xk − Xj) exp(−
|Xk − Xj |2

ϵ
),

u(t , x) ∼ 1
N

∑
j=1,N

δ(x − Xj(t)), 1/N << ϵd << 1.

see for instance P.-L. Lions, S. Mas-Gallic 2001.
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We start with the strange minimization problem:

inf

∫
Q

u2(t , x)dxdt , Q = [0,T ]× Td ,

among all WEAK solutions u ∈ L2(Q) ot the QPME

∂tu = ∆u2/2, u = u(t , x) ∈ R, t ≥ 0, x ∈ Td ,

with a smooth given initial condition u0 > 0.
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The saddle point formulation reads

I(u0) = inf
u

sup
ϕ

∫
Q

(
u2 − 2∂tϕu −∆ϕ u2 + 2u0∂tϕ

)
,

where the only constraints are:
i) for test function ϕ to be smooth and vanish at t = T ;
ii) for function u to be square integrable on Q.
This problem admits an interesting concave relaxation:

J(u0) = sup
ϕ

inf
u

∫
Q

(
u2 − 2∂tϕu −∆ϕ u2 + 2u0∂tϕ

)
.
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The relaxed problem is very simple

J(u0) = sup
ϕ

inf
u

∫
Q

(
u2 − 2∂tϕu −∆ϕ u2 + 2u0∂tϕ

)
=

sup
ϕ

∫
Q

(
− (∂tϕ)

2

1 −∆ϕ
+ 2u0∂tϕ

)
, ∆ϕ ≤ 1, ϕ(T , ·) = 0.

Setting q = ∂tϕ, σ = 1 −∆ϕ, we get: J(u0) =

sup
σ,q

∫
Q

(
−q2

σ
+ 2u0 q

)
, ∂tσ +∆q = 0, σ(T , ·) = 1
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Prop: for all T > 0, the IVP can be solved through

sup
σ,q

∫
Q

(
−q2

σ
+ 2u0 q

)
s.t.

∂tσ +∆q = 0, σ(T , ·) = 1,

which is (at least for d = 1) the "ballistic" version of
the formulation proposed by Huesmann and Trevisan
for the martingale optimal transport problem:
"A Benamou-Brenier formulation of martingale optimal transport" Bernoulli 2019.

(See also Loeper, Ghoussoub-Kim and the recent work made in the Mokaplan team.)
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The proof is based on a simple remark:
All solutions of the QPME satisfy the Aronson-Bénilan
estimate ∆u ≥ −κ/t where κ just depends on d .

Indeed, let us find a solution ϕ of the "adjoint" problem

∂tϕ = (1 −∆ϕ)u, ϕ(T , ·) = 0,

i.e., for α = 1 −∆ϕ : ∂tα +∆(αu) = 0, α(T , ·) = 1.

From Aronson-Bénilan, we deduce α(t , x) ≥ (t/T )κ.
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Proof. (Assuming u to be smooth) we have

∂tα +∆(αu) = ∂tα + u∆α + 2∇α · ∇u + α∆u = 0.

Thanks to AB, we get for A(t) = infx∈Td α(t , x)

A′(t) ≤ κA(t)/t .

So, logA(T )− logA(t) ≤ κ(logT − log t), and therefore

A(t) ≥ (t/T )κ (since A(T ) = 1). End of proof.
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Optimality of ϕ. Let us now evaluate

j =
∫

Q

(
− (∂tϕ)

2

1 −∆ϕ
+ 2u0∂tϕ

)
.

Since u solves the QPME with initial condition u0,

we have
∫

Q

(
2∂tϕu +∆ϕu2 − 2∂tϕu0

)
= 0. Thus

j =
∫

Q

(
− (∂tϕ)

2

1 −∆ϕ
+ 2u∂tϕ+∆ϕu2

)
=

∫
Q

u2

(using ∂tϕ = (1 −∆ϕ)u ) which shows that ϕ is
optimal since J(u0) ≥ j =

∫
Q u2 ≥ I(u0) ≥ J(u0).
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II. Example of the isothermal Euler equations:
Solve the initial value problem by minimizing∫

[0,T ]×Td
exp(u) exp(

1
2

Z · M−1 · Z ) +

∫
Td

σ0ρ0 + w0 · ρ0v0

among all fields u = u(t , x) ∈ R, Z = Z (t , x) ∈ Rd ,

M = M(t , x) = MT (t , x) ∈ Rd×d , M ≥ 0,

u = ∂tσ + ∂ iwi , Zi = ∂twi + ∂iσ, Mij = δij − ∂iwj − ∂jwi ,

where σ and w must vanish at t = T .
Proposition (YB 18): Smooth solutions with initial
data ρ0, v0 can be recovered this way, for small T > 0.
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III. Vacuum Einstein with cosmological constant
"Free fall" in a Lorentzian metric g is described by
("constant speed") geodesics s ∈ R → x(s) ∈ R4

i.e. critical points of
∫

dx(s)
ds

· g(x(s)) · dx(s)
ds

ds i.e.

dx i(s)
ds = ξ i(s), dξi(s)

ds = −Γi
jk(x(s))ξ

j(s)ξk(s),

2gimΓ
m
jk + ∂igjk − ∂jgik − ∂kgij = 0, i, j, k ,m ∈ {0, 1, 2, 3},

Γm
jk being just the Christoffel symbols of g.
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Our trick: write everything on the "tangent bundle"

(x , ξ) ∈ R4 × R4, V j
k(x , ξ) = −Γj

kγ(x)ξ
γ

(j, k , γ ∈ {0, 1, 2, 3})

so that the Riemann and the Ricci curvatures just read

Rn
jkm(x)ξ

m =
(
(∂xk + V γ

k ∂ξγ)V
n
j − (∂x j + V γ

j ∂ξγ)V
n
k

)
(x , ξ)

Rkm(x)ξm =
(
(∂xk + V γ

k ∂ξγ)V
j
j − (∂x j + V γ

j ∂ξγ)V
j
k

)
(x , ξ).

The Einstein equations in vacuum with cosmological
constant just mean for the Lorentzian metric g over R4

that its Ricci curvature is proportional to g.
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(x , ξ).

The Einstein equations in vacuum with cosmological
constant just mean for the Lorentzian metric g over R4

that its Ricci curvature is proportional to g.
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Similarly, we may encode the link between Γ and g:

∂x j gkq = Γm
jk gmq + Γm

jqgmk , Γi
jk = Γi

kj ,

which indeed is equivalent to 2gmiΓ
i
jk + ∂mgjk − ∂jgmk − ∂k gmj = 0,

by ∂x jρ+ ∂ξm(ρV m
j ) = 0,

with
ρ(x , ξ) = exp(

gij(x)ξiξj+log |detg(x)|
2 ), V j

k(x , ξ) = −Γj
kγ(x)ξ

γ

i.e. in compact non geometric notation:

∇xρ+∇ξ · (ρV ) = 0.
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Proposition
The Einstein equations with cosmological constant Λ
just describe special solutions, linear/log-quadratic in ξ

V (x , ξ) = −Γ(x) · ξ, ρ(x , ξ) =
√
|detg(x)| exp(ξ · g(x) · ξ

2
)

of the LIFTED PDE system set on (x , ξ) ∈ R4 × R4:

∇xρ+∇ξ · (ρV ) = 0, V ∈ R4×4, ρ ∈ R+,

∇x · (ρ[V ]) +∇ξ · (ρ[V ]V ) = Λ∇ξρ,

where [M] = M − I4 trace(M) for M ∈ R4×4, ∇x , ∇ξ being just plain Euclidean

gradients and ∇x · M, ∇ξ · M standing for ∂x j M j
k , ∂ξj M j

k .
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There is a striking similarity between the LIFTED
EINSTEIN equations with cosmological constant Λ

∇xρ+∇ξ · (ρV ) = 0, V ∈ R4×4, ρ ∈ R+,

∇x · (ρ[V ]) +∇ξ · (ρ[V ]V ) = Λ∇ξρ,

and the EULER equations of isothermal
compressible fluids with constant sound speed c

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −c2∇ρ.

(t , x) ∈ R1+d → (x , ξ) ∈ R4+4, ∂t → ∇x , ∇ → ∇ξ,

v ∈ Rd → V ∈ R4×4, ρ ∈ R+ → ρ ∈ R+, c2 → −Λ.
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"LISEZ EULER, IL EST NOTRE MAITRE A TOUS!" (Laplace)
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For the isothermal Euler equations, we saw how
to solve the initial value problem by minimizing∫
[0,T ]×Td

exp(u) exp(
1
2

Z · M−1 · Z ) +

∫
Td

σ0ρ0 + w0 · ρ0v0

among all fields u = u(t , x) ∈ R, Z = Z (t , x) ∈ Rd ,

M = M(t , x) = MT (t , x) ∈ Rd×d , M ≥ 0,

u = ∂tσ + ∂ iwi , Zi = ∂twi + ∂iσ, Mij = δij − ∂iwj − ∂jwi ,

where σ and w must vanish at t = T .

For Einstein’s equations, a very similar formula can be
worked out!
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Děkuji za pozornost!
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