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SOLVING IVP BY CONVEX MINIMIZATION

Solving initial value problems by space-time convex
minimization is an old idea going back to the least
square method for LINEAR equations.

Since 2018, | have worked out this idea for a large
class of NONLINEAR PDEs,

see also D. Vorotnikov ('22) and A. Acharya ('23).
Ref.: Y.B. CMP 2018 and Lecture notes "Hidden Convexity" Y.B. 20, hal-02928398.
| will start with the simplest example: the (quadratic)
porous medium equation. Then, | will discuss the
challenging case of the Einstein equation in vacuum
with a cosmological constant revisited as a matrix
valued version of the isothermal Euler equations.
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l. Case of the quadratic porous medium equation:
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I. Case of the quadratic porous medium equation:

(QPME) du = Au?/2, u=u(t,x)>0, t>0, x €T,

which is nothing but the macroscopic limit of the
properly rescaled (deterministic) system of particles:
aXk | Xk — Xi|?

- = —1 _ . _

),

u(t, x) ~ 1N D d(x = X(1), 1/N<<e?<<1.
j=1,N

see for instance P.-L. Lions, S. Mas-Gallic 2001.
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We start with the strange minimization problem:

inf / U?(t, x)dxdt, Q=1[0, T] x T
Q
among all WEAK solutions u € L2(Q) ot the QPME
ou=Au?/2, u=u(t,x)eR, t>0, xeT9,

with a smooth given initial condition ug > 0.
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The saddle point formulation reads



The saddle point formulation reads

/(Uo) = H?Jf sup/ (U2 — 201U — Ao u? + 2U0(9t¢) ,
¢ JQ

where the only constraints are:
i) for test function ¢ to be smooth and vanish att = T;
ii) for function u to be square integrable on Q.



The saddle point formulation reads

I(Up) = ir&f sup/ (UP — 201U — A UP + 2Up0s9))
¢ JQ

where the only constraints are:
i) for test function ¢ to be smooth and vanish att = T;
ii) for function u to be square integrable on Q.
This problem admits an interesting concave relaxation:

J(up) = supin / (UP — 201U — A UP + 2Up0rg)) .
¢ Q
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The relaxed problem is very simple



The relaxed problem is very simple

J(Up) = supirLlI / (UP — 201U — A¢ UP + 2Up0r) =
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The relaxed problem is very simple

J(Up) = supirLlI / (UP — 201U — A¢ UP + 2Up0r) =
¢ Q

¢
Setting g = dip, 0 = 1 — Agp, we get:  J(Up) =

0 2
sup [ (120 v 2w00) Bo<1, o(T.) =0

2
sup/(—q—+2uo q), oo +Aq=0, oT,)=1
o.q JQ o
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Prop: for all T > 0, the IVP can be solved through



Prop: for all T > 0, the IVP can be solved through

G
sup/(——+2uo q)
oq JQ o

atU+Aq:0, O(Ta'):1>

which is (at least for d = 1) the "ballistic" version of
the formulation proposed by Huesmann and Trevisan
for the martingale optimal transport problem:

"A Benamou-Brenier formulation of martingale optimal transport" Bernoulli 2019.

S.t.

(See also Loeper, Ghoussoub-Kim and the recent work made in the Mokaplan team.)
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The proof is based on a simple remark:

All solutions of the QPME satisfy the Aronson-Bénilan
estimate Au> —x/t where « just depends on d.



The proof is based on a simple remark:

All solutions of the QPME satisfy the Aronson-Bénilan
estimate Au> —x/t where « just depends on d.

Indeed, let us find a solution ¢ of the "adjoint" problem

ath - (1 - A¢)U, ¢(T7 ) - 07
e, fora=1—-A¢ : 0o+ Alau) =0, «oT,)=1.

From Aronson-Bénilan, we deduce a(t, x) > (t/T)".
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Proof. (Assuming u to be smooth) we have

dra + A(au) = O + UAa + 2Va - Vu + aAu = 0.
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Proof. (Assuming u to be smooth) we have
dra + A(au) = O + UAa + 2Va - Vu + aAu = 0.
Thanks to AB, we get for A(t) = inf <o a(t, X)
A(t) < KA(t)/t.
So, log A(T) — log A(t) < k(log T — log t), and therefore
A(t) > (t/T)" (since A(T) = 1). End of proof.
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Optimality of ¢. Let us now evaluate
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Optimality of ¢. Let us now evaluate

- (Orp)?
j_/Q<_1 _A¢+2U08t¢>.

Since u solves the QPME with initial condition uy,

we have [, (201pu + Apu? — 20;pup) = 0. Thus

. ~ (Or9)? 2)_ 2
j_/o( 1_A¢+2u6t</>+A¢u —/Qu

(using 0:¢ = (1 — A¢)u ) which shows that ¢ is
optimal since  J(uo) > j = [ou? > I(up) > J(up).
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Il. Example of the isothermal Euler equations:
Solve the initial value problem by minimizing
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Il. Example of the isothermal Euler equations:
Solve the initial value problem by minimizing

’
/ exp(U)exp(5Z - M- 2) +/ agopo + Wo - poVo
[0,T]xT¢ 2 Td
among all fields u = u(t,x) € R, Z = Z(t, x) € RY,
M = M(t,x) = MT(t,x) € R9*9 M >0,
u= 0t + é?’w,-, Z; = 0w, + Ojo, Mij = (5,‘1 — 6,-W,- — 8jW/,

where o and w must vanishatt=T.

Proposition (YB 18): Smooth solutions with initial
data pg, Vo can be recovered this way, for small T > 0.
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lll. Vacuum Einstein with cosmological constant

"Free fall" in a Lorentzian metric g is described by
("constant speed") geodesics s € R — x(s) € R*

: . : dx(s) dx(s) :
i.e. critical points of/ s - g(x(8)) - s ds ie.




lll. Vacuum Einstein with cosmological constant

"Free fall" in a Lorentzian metric g is described by
("constant speed") geodesics s € R — x(s) € R*

ax(s)

= ds i.e.

i.e. critical points of / d);(ss) -g(x(s)) -

= £i(s), EE = 17, (x(s)&(s)EX(9),
2g,-mr;g + 0igjk — 0j9ik — OkQjj = 0, i.j.k,me {0,1,2,3},

[k being just the Christoffel symbols of g.
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Our trick: write everything on the "tangent bundle"

(X7€) E R4 X IR47 V/j((x7 f) - _rjk"y(x)f’y (/'7/(’76 {01273})
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Our trick: write everything on the "tangent bundle"
(x,6) € R* x R4, Vi(x,8) = =T} (X)€" Gkvepr23)
so that the Riemann and the Ricci curvatures just read

6™ = (00 + V0V — (0 + V] 0) Vi) (x,)

Rim(X)E™ = ((axk + V30e)V] — (9 + V;/a@)vé) (x. ).

The Einstein equations in vacuum with cosmological
constant just mean for the Lorentzian metric g over R*
that its Ricci curvature is proportional to g.
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Similarly, we may encode the link between I and g:

OxiGkg = T jkGmq + T jgOmk, jl:k = rﬁ(j?

which indeed is equivalentto 29[ + OmGik — 0jgmk — OkGmj = O,
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Similarly, we may encode the link between I and g:

_rm m I i
OxiOkq = jk9mq + TjgOmk,  Tix =T,
which indeed is equivalentto 29[ + OmGik — 0jgmk — OkGmj = O,
by -+ Der(p V") = O,

with N . .
p(x, ) = exp(SLIEEEEIN) (5 €) = T (x)€

l.e. in compact non geometric notation:

Vip+ Ve (pV) = 0.

YB (CNRS Orsay and INRIA PARMA) IVP BY SPACE-TIME OPTIMIZATION PRAHA 26 SEPT 24 14/19



Proposition
The Einstein equations with cosmological constant A
just describe special solutions, linear/log-quadratic in &

Vix,€) = ~T(x) & p(x.€) = v/[aeig()] exp( S92

of the LIFTED PDE system set on (x, &) € R* x R*:
Vip+Ve-(pV)=0, VERY™ pecR,,
V- (VD) + Ve - (AIVIV) = AVp.

where [M] = M — 1, trace(M) for M € R***, V,, V being just plain Euclidean
gradients and V - M, V - M standing for 9,; M, d; M.
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There is a striking similarity between the LIFTED
EINSTEIN equations with cosmological constant A

Vxp+Ve-(pV)=0, Ve R¥4 peR,,

Vi (pIV]) + Ve - (p[V]V) = AVp,

and the EULER equations of isothermal
compressible fluids with constant sound speed ¢

Ip+V-(pv) =0, 0(pv) + V- (pv®@ V) = —c?*Vp.



There is a striking similarity between the LIFTED
EINSTEIN equations with cosmological constant A
Vxp+Ve-(pV)=0, Ve R¥4 peR,,

Vi (p[V]) + Ve - (p[V]V) = AVep,

and the EULER equations of isothermal
compressible fluids with constant sound speed ¢

Ip+V-(pv) =0, 0(pv) + V- (pv®@ V) = —c?*Vp.

(t,x) R 5 (x,6) e R**, 9 = Vi, V = V¢,
veR! 5 VeRY™, peR, speRy, ¢ — —A
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"LISEZ EULER, IL EST NOTRE MAITRE A TOUS!" (Laplace)
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For the isothermal Euler equations, we saw how
to solve the initial value problem by minimizing

’
/ exp(U)exp(5Z - M- 2) +/ agopo + Wo - poVo
[0,T]xT9 2 T
among all fields u = u(t,x) € R, Z = Z(t, x) € RY,
M= M(t,x) = MT"(t,x) e R4 M >0,
u= 0t + é?’w,-, Zi = OtW,; + 6,-0, Mij = (5,‘1 — 6,-W,- — 8jW/,
where ¢ and w must vanishatt = T.

For Einstein’s equations, a very similar formula can be
worked out!

YB (CNRS Orsay and INRIA PARMA) IVP BY SPACE-TIME OPTIMIZATION PRAHA 26 SEPT 24 18/19



Deékuji za pozornost!
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