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Navier—Stokes—Fourier system

Mass conservation
Oro + divi(ou) =0

Momentum balance (Newton’ s second law)

Ot (ou) + dive(ou ® u) + Vip(o,9) = diviS(Dxu) + 0V« G

Internal energy balance (First law of thermodynamics)

Oroe(o, ) +divi(oe(o, )u) +diviq(Vx?) = S(Dxu) : Dyu—p(g, ¥)diviu

Newton'’s rheological law

S(Dxu) = p (qu + Viu— %divxuﬂ) + ndiveul, 4 >0, n>0
Fourier’s law

q(Vyd) = —kVid, >0




Thermodynamics

Gibbs’ law, Second law of thermodynamics

¥Ds = De + pD <§)

Entropy balance equation (Second law of thermodynamics)

Ot(0s(0,9))+divx(os(o, ¥)u)+divy (%) = % (S(Dxu) : Dyu — q- Zxﬁ)

Thermodynamic stability

1|mp? :
(0,S,m) — E‘m— + oe(o, S)J strictly convex, S = gs, m = pu
[

Boyle-Mariotte equation of state

p(o,9) = 09, e(o,¥) =¥, ¢, >0, s(p,9) =c, log¥ —logp




Data

Physical space

Q c R?, d =2,3 (bounded) domain

Inhomogeneous (no—slip) conditions

ulspo = ug, up-n =0 impermeable boundary

Boundary temperature vs. heat flux

Q=TpUTln, dor, =98, q-n|r, =0

Initial state of the system

Q(O7 ) = 0o, 19(0, ) = 190, 00 > 07’[90 > 07 U(O7 ) = Up

+ compatibility conditions




Initial/boundary value problem

Existence of local-in—time strong solutions
m Valli, Valli-Zajaczkowski [1986], Kagei—Kawashima [2006]

00 € W(Q), 9 € WH(Q), up € W**(Q; RY), k>3
m Cho—-Kim [2006]

00 € WHP(Q), 9o € WH2(Q), up € W**(Q;RY), 3<p<6

ug =0, q-njgo =0

m Kotschote [2015]

00 € WHP(R), 9o € W25 P(Q), uo € W25 P(2; RY), p> 3




Conditional regularity results, I.

Nash’s conjecture: Probably one should first try to prove a con-
ditional existence and uniqueness theorem for flow equations. This
should give existence, smoothness, and unique continuation (in
‘i time) of flows, conditional on the non-appearance of certain gross
John F. Nash types of singularity, such as infinities of temperature or density.
[1928-2015]

s )
m EF, Wen, Zhu [2022] [Cho—Kim regularity class]

ug =0, q-njpg =0

sup (sup g(t7-)+sup19(t,~)) <00 = Tmax > T
te[o,T) \ Q Q

m Basari¢, EF, Mizerova [2023] [Valli-Zajaczkowski regularity
class]

ug-n=0, Jasg =98

sup (sup g(t,-)+sup§(t,~)+sup|u(t,-)|> <00 = Tmax>T
te[o,T) \ Q Q Q




Conditional regularity results, Il.

Abbatiello, Basari¢, Chaudhuri, EF [2024]

ug-n=0, Vdr, =98, q-nlr, =gs
LP — L9 class of solutions

2q
2g—3

3< g < oo, <p< oo

2(1—1 211
00 € Wl’q(Q)v o € Bq,(p p)(Q): uo € Bq,(p p)(Q? R3)
Blow—up criterion

Either Tihax = 00 or

lim sup ||(Q7197u)(t7 ')||C(ﬁ;R5) = 0.

tﬁ(Tmax)f

The blow-up time is the same for Cho-Kim, Valli-Zajaczkowski, and
Kotschote class




Peter D. Lax

Lax equivalence principle in numerical analysis

Formulation for | LINEAR | problems

e Stability - uniform bounds of approximate solutions

e Consistency - vanishing approximation error

=

exact solution

e Convergence - approximate solutions converge to
\




Lax equivalence principle - nonlinear version

e Stability - uniform L bounds of approximate solutions

e Consistency - vanishing approximation error

=

e Convergence - approximate solutions converge to a generalized solution
measure—valued solution

e Weak-strong uniqueness - the measure valued solution coincides with
the strong solution on its life span [0, T)max

e Conditional regularity - Tax = o0 as long as the solution remains
bounded

=

e Unconditional convergence of bounded consistent approximations




Numerical problems with uncertain data

\_

s N
Probability space
{Q; B,P}, Q measurable space
B o — algebra of measurable sets, P — complete probability measure
Random data
w € Q+— D € Xp Borel measurable mapping
4 Y,
s N

Solutions as random variables

Tmax = Tmax[D] — random variable
D +— (0,9, u)[D] random variable

Statistical solution

strong sense: w € Q — (o,9,u)(t,)[D], t € [0, Tmax)
weak sense: L[(o, 9, u)(t,-)[D]]

L - law (distribution) of (o,9,u)(t,-) in W*?(Q) x W3?(Q) x W*?(Q; RY)

Y,




Convergence of consistent approximations

Strong data convergence

D = [0D,n,9D,n,up,n] = D = [op,¥p,up] in Xp
P— as.

Consistent approximation

(0nyYn,un) = (0,9,u)n,[Dn] a sequence of consistent approximations

Hypothesis of boundedness in probability
For any € > 0, there exists M > 0 such that

limsupP< sup on[Dn] + sup Ua[Dn] + sup |un[Ds]| > M3 <e
( 0,T)xQ Q

n— oo 0, T)xXQ (0,T)x




Convergence of consistent approximations, |

1 Apply Skorokhod representation theorem to the sequence
(Dm On, ¥nun, An)iilv

A= sup oD+ sup 0,[D]+ sup |u,[Di]
0, T)xQ 0, T)xQ 0,T)xQ

2 New sequence of data D, with the same law on the standard
probability space,

5n —Din X4, dy surely.
A= sup os[Da]+ sup Ua[Ds]+ sup |us[Dn]] = A
0,T)xQ (0,7)xQ 0,T)xQ
dy surely

0 [Dn] — & weakly-(*) in L=((0, T) x Q)

U, [Dn,] = U weakly-(*) in L=((0, T) x Q)
Un, [Dn,] = U weakly-(*) in L>((0, T) x Q; RY)

dy surely




Convergence of consistent approximations, |l

4 Show the limit is a measure—valued solution with the data D in the
sense of B¥ezina, EF, Novotny [2020], see also Chaudhuri [2022]

5 Apply the weak—strong uniqueness principle to conclude the (g, 5, u)
is the unique strong solution associated to the data D,

(6.9,1) = (0,9,u)[D].

Conclude there is no need of subsequence, Tmax[D] > T, and
convergence is strong for in L9 for any finite q.

6 Pass to the original space using Gyongy—Krylov theorem

Conclusion — unconditional convergence of consistent approximations

Tmax[D] > T ass.
(Q? 197 u)hn [Dn] — (Q? 197 U)[D]
in L9(0, T) x QR forany 1 < g < oo
in probability




