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Overview

▶ Geometry: The Virtual Human Eye

▶ A living system: modeling the physiology (flow and structures)

▶ The pathophysiology (glaucoma, Age-related Macular Degeneration, AMD)

▶ Modeling & Simulation of the treatment (stent, trabeculectomy, pharmacological
models)

▶ Analyzing the treatment efficacy
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Anatomy of the eye
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Geometrical model of the Eye

▶ each component of the eye is represented by a suitable mathematical function

▶ the parameters of the functions are fitted to data

▶ data from imaging techniques: US, MRI, OCT

E. Friedmann Models & Algorithms for Ophthalmology



A model for the vitreus

X = R(ϕ) cos(ϕ), Y = R(ϕ) sin(ϕ) cos(φ), Z = R(ϕ) sin(ϕ) sin(φ), R(ϕ) = p1+p2 cos(ϕ)+p3 cos(ϕ)3

E. Friedmann Models & Algorithms for Ophthalmology



A model for the lens

natural lense: 2 hemiellipsoids

artificial lense: thin cylinder & haptics: 2 ellipsoid-sections
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A model for the iris

healthy iris I := {x , y , z ∈ hemiellipsoid|z2 + y2 > R2, x ∈ [a, b]}

pathological iris I := M\{x , y , z ∈ R | z2 + y2 = R2
z , x ∈ [h − aI + s, h + s]}
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A model for the ciliary body

cb(x) =


a1(x + 4.5)2 + a2 for − 5.5 ≤ x ≤ −4.6
a3(x + 3.5)2 + a4 for − 4.61 ≤ x ≤ −1.7
a5 exp x + a6 for − 1.7 ≤ x ≤ 3.66
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A model for the cornea & sclera

eye(x) =



√
bb2 − ( (x−4.2)·bb

aa )2 for 8 ≤ x ≤ 15
c1(x − 5.2)2 + c2 for − 3 ≤ x ≤ 8
c3 exp x + c4 for − 5 ≤ x ≤ −3√

b2 − ( (x−4.2)·b
a )2 for − 8.8 ≤ x < −5
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The Virtual Eye
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Physiology of the human eye

Fig. 48.2 www.nursekey.com/assessment-of-the-eye-and-vision-2,
[Sebag, Springer, 2014]

▶ elastic structures: cornea,
sclera, lens

▶ viscoelastic vitreous (healthy
case)

▶ flow: aqueous humour is
produced in the ciliary body,
fills the anterior chamber and
leaves through trabecular
meshwork

▶ flow: small fraction flows
through the vitreous

▶ chemistry (signaling)

▶ exchange of molecules
(diffusion, convection)
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Governing equations: elastic structures

cornea, sclera & lens
▶ Conservation of momentum in Lagrangian framework

ρ̂0
s∂

2
t ûs − d̂iv(Π̂) = ρ̂0

s f̂s in Ω̂s , t ∈ I

with Π̂ = ∂Ŵ
∂F̂ , Ĵ = detF̂ , F̂ := Î + ∇̂ûs , Ĉ = F̂ T F̂ and a Neo-Hookean solid for

cornea & sclera: [Simo et al. 1985, Grytz et al. 2014]

Π̂ = µĴ−2/3
(

F̂ − 1
3 tr(Ĉ)F̂ −T

)
+ κlnĴ F̂ −T

lens: [Wilde 2011]

Π̂ = µĴ−2/3
(

F̂ − 1
3 tr(Ĉ)F̂ −T

)
+ κ(Ĵ − 1)Ĵ F̂ −T

▶ Mixed formulation
ρ̂0

s∂t v̂s − d̂iv(Π̂) = ρ̂0
s f̂s in Ω̂s , t ∈ I

∂t ûs − v̂s = 0 in Ω̂s , t ∈ I
+ Initial and boundary conditions (Dirichlet and Neumann b.c.)
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Anterior aqueous humor flow

model equations:
▶ steady Stokes equations in the anterior chamber

▶ Darcy model for the flow through the trabecular meshwork (TMW)

Parameter:
▶ volume of the anterior chamber V = 0.16 ml

▶ gravitation f = (−g , 0, 0)

▶ viscosity of the aqueous humor ν = 7 · 10−7 Pa·s

▶ inflow (production rate in the ciliary body) vin = 2 mm3/min

▶ permeability of the trabecular meshwork (TMW) K = 0.778 · 10−9 mm2

▶ outflow condition at TMW: episcleral pressure 1200 Pa = 9 mmHg

▶ pupil aperture d = 3mm
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Model of anterior aqueous humor flow

−∇ · T(u, p) = f
∇ · u = 0

u = uCB
in on Γin

u = 0 on Γns

n · T(u, p) · n = p0 on Γout

n · T(u, p) · τ = α̃u · τ on Γout,

with T(u, p) = 2νD(u)− pI, the normal vectors n, the tangential vectors τ ,
p0 = 1

|Ωp |

∫
Ωp

p(x) dx the pressure of the TM calculated via Darcy and α̃ donates the
friction constant

−∇ · (K
ν
∇p) = f2

K
ν
∇p · n = 0 on Γwall

K
ν
∇p · n = uTW

in · n on Γin

p = pout on Γout,
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Simulations for the aqueous humor flow
Stokes model: Taylor Hood Finite Elements

streamlines for the aqueous humor flow

Darcy model: Lagrange Finite Elements

trabecular meshwork
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Pathophysiology: glaucoma

IOP=28.37 mmHg partly clogged TMW
IOP=23.17 mmHg (−18%) after inter-
vention (trabeculectomy)
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Pathophysiology: glaucoma

IOP drops from 51.1 to 50.15
mmHg with a 1 mm stent

IOP drops from 51.1 to 48.52
mmHg with a 3 mm cut

IOP=44 mmHg (-12%) with a
6 mm cut
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Refractive surgery

d = 360 µm, vaulting v = 350 µm, K = 0.778 · 10−9 mm2, ν = 7 · 10−7 Pa·s

IOP: 10.09 mmHg for the healthy eye
IOP: 17.50 mmHg for the eye with pIOL.
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Posterior aqueous humor flow

▶ general balance equations:
ρf ∂tvf + ρf (vf · ∇)vf − divT = ρf f in Ωf , t ∈ I

divvf = 0 in Ωf , t ∈ I

▶ pathological (liquified) vitreous: Navier-Stokes

T = −pf I + 2ρf νf D(vf ), D(vf ) := 1
2(∇vf +∇vT

f )

▶ healthy vitreous: viscoelastic Burgers-type model [Tůma, Stein, Prusa, EF 2018],
[Tram & Swindle-Reilly, 2018], [Sharif-Kashani et al. 2011]

T = −pf I + 2ρf νf D(vf ) + µ1(B1 − I) + µ2(B2 − I) with

▽
B1 +µ1

ν1
(B1 − I) = 0,

▽
B2 +µ2

ν2
(B2 − I) = 0 and

▽
B1:= ∂tB1 + (vf · ∇)B1 − (∇vf )B1 − B1(∇vf )T

▶ boundary conditions: parabolic inflow + no-slip condition at the lens
+ outflow: Tn · n = kpermv · n, Tn · τ = 0
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Disease & Treatment
Disease: Age-related macular degeneration (AMD)
▶ results in vision loss due to abnormal blood vessel growth underneath the retina
▶ leading cause of irreversible blindness among the older generation
▶ affected around 6.2 million people globally (status 2015)
▶ the age-related changes that stimulate the pathology are incompletely understood
▶ measure of the severity of the disease: vascular endothelial growth factor (VEGF)

Treatment: Anti-VEGF intravitreal injections
▶ 0.05ml Eylea (Aflibercept) or Lucentis

(Ranibizumab) every month at the
beginning

▶ drug diffuses to the retina and effects there
locally at the macula
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Governing equations for molecules exchange

▶ Convection-diffusion equation

∂tc + (v · ∇)c − D∆c = 0 in Ωf , t ∈ I

▶ Underlying flow: Burgers-type or Navier-Stokes

▶ Boundary conditions:
−(D∇c) · n = 0 on Γlens

−(D∇c) · n + c(v · n) = p0c on Γhyaloid

−(D∇c) · n + c(v · n) = p1c on Γretina

▶ + initial conditions
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Drug therapy in the vitreous & retina

Sketch of the two domains sliced in the middle

▶ Vitreous: System of
convection-diffusion-reaction
equations

▶ Retina: System of
diffusion-reaction equations

▶ Reaction chain:
[Hutton-Smith et al. 2018]

A + V
2kon−−−→←−−−
koff

VA

A + VA
kon−−−→←−−−

2koff
AVA

▶ Drug: A, VEGF: V, drug-VEGF
complex VA, drug-VEGF-drug
complex AVA
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Pharmacological model in the vitreous Ωv

▶ convection-diffusion equation + binding & dissociation mechanism

dcavit

dt + vv · ∇cavit − Davit ∆cavit = (koffcvavit − 2koncvvit cavit )

+ (2koffcavavit − koncavit cvavit ) in Ωv, t ∈ I
dcvvit

dt + vv · ∇cvvit − Dvvit ∆cvvit = (koffcvavit − 2koncvvit cavit ) in Ωv, t ∈ I

dcvavit

dt + vv · ∇cvavit − Dvavit ∆cvavit = −(koffcvavit − 2koncvvit cavit )

+ (2koffcavavit − koncavit cvavit ) in Ωv, t ∈ I
dcavavit

dt + vv · ∇cavavit − Davavit ∆cavavit = −(2koffcavavit − koncavit cvavit ) in Ωv, t ∈ I.
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Pharmacological model in the retina Ωret

▶ diffusion equation + binding & dissociation mechanism + VEGF production

dcaret

dt − Daret ∆caret = (koffcvaret − 2koncvret caret )

+ (2koffcavaret − koncaret cvaret ) in Ωret, t ∈ I
dcvret

dt − Dvret ∆cvret = (koffcvaret − 2koncvret caret ) + kp

Vret
in Ωret, t ∈ I

dcvaret

dt − Dvaret ∆cvaret = −(koffcvaret − 2koncvret caret )

+ (2koffcavaret − koncaret cvaret ) in Ωret, t ∈ I
dcavaret

dt − Davaret ∆cavaret = −(2koffcavaret − koncaret cvaret ) in Ωret, t ∈ I.

▶ Interface condition of the type:

−D∂nvit cjvit = pILM(cjvit − cjret ) on ΓI

D∂nret cjret = D∂nvit cjvit on ΓI

▶ Boundary: Neumann condition
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Concentrations after 0.5, 1 and 4.5 days

▶ The drug (anti-VEGF)
distributes over time in
the vitreous and slowly
travels to the retina

▶ The VEGF concentration
is higher in the retina
than in the vitreous.
Over time the VEGF in
the retina decreases due
to an increase of drug
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Results

▶ the gravitation is neglectable

▶ The amount of drug reaching the macula depends on the injection position and time

▶ best pair of injection angles: ψxy = 50◦, ψz = 50◦
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Results

▶ drug comparison: Lucentis (ranibizumab I, II) by Novartis vs Eylea (aflibercept) by
Bayer
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Conclusion

Conclusion:

▶ Our presented models describe the geometry & physiology of the human eye

▶ Personalized models for the geometry of the eye & vitreous (pathological & healthy)

▶ We can test products from industry (pIOL)

▶ Drug therapy: pharmacological models & FE simulation

▶ Comparison of different drugs, their efficacy and different injection positions
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