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In hard materials, necking is usually induced/accompanied by plastic

deformations:
—

A%

Necking
— =

Elastic necking/bulging may also occur in soft materials subject to mechanical
as well as non-mechanical fields (surface tension, electric field, etc).

e.g. hydro-gels, nerve fibres, nanofibers during electrospinning, etc.

Neuronal Culture with Axonal Swel

Mora et al (2010) Hemphill et al (2015) Fong et al (1999)

Fu, Jin & Goriely (JMPS, 2021).
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Localized bulging in an inflated rubber tube:

fixed axial force fixed ends/length

Wang et al. (JMPS, 2019)

Yibin Fu Prague-2024



Dielectric elastomer actuators (DEAs):
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Elastomer membrane

Wiranata et al (2021, Adv. Eng. Mater.)

Electric field E vs electric displacement D:
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Based on the above curve, it is commonly believed that when E reaches the
maximum, rapid but uniform thinning will take place, that leads to electric
breakdown.
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Current study: explore failure through axisymmetric necking
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Based on three papers:

Purely mechanical case

Mi Wang, Lishuai Jin & Yibin Fu: Axisymmetric necking versus
Treloar-Kearsley instability in a hyperelastic sheet under equibiaxial
stretching, Math. Mech. Solids 27 (2022), 1610-1631.

Electroelastic case

Yibin Fu & Xiang Yu: Axisymmetric necking of a circular electrodes-coated
dielectric membrane, Mechanics of Materials 181 (2023), 104645.

1D reduced model

Xiang Yu & Yibin Fu : A 1D reduced model for the axisymmetric necking of a
circular electrodes-coated dielectric membrane, to submit

Will focus on the purely mechanical case in order to simplify presentation.
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Governing equations

&
Linear analysis
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Governing equations

Deformation gradient F:
dx = FdX, dx=FdX.
- I~-':I_'-Jr17l_-'7 where 1) = grad u.

Eigenvalues of V FE" are M\, Mo, s Incompressibility: A A2As = 1.
Nominal stresses:

S=S(F,p), S=S5(F,p).
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Convention: (r, 6, z) corresponds to (1,2, 3).

Primary deformation:

F=)eve +rey0e+)1’e. e,

and p is determined from Ss3 = 0.

The bifurcation parameter is \.

Incremental displacement: u = u(r,z) e, + v(r, z) ez.
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Define x through .
X' =F(§-8), p =p-p
We expand to obtain

* - * 1
Xi = Ajiknig — P i + (P + P ) (i — Njm7imi) + EAﬁlknmnkmmn +-

where

eve+lewet e ne + Ve vet+ e ne
r r r0 (4 azr z a’_z r 822 zZ-

au

n = gra or

Equilibrium equation is divx" = 0, i.e.

1 1
X1j,j + ;(Xﬂ —x22) =0, xz,;+ “xs1 = 0.

Incompressibility
det(/+m)=0.

BCs: x33 = x13 = 0 on top and bottom surfaces.
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Bifurcation condition

Methods used for two well-known localisation problems:

W C
R —

tube inflation solitary water waves

Both involve a bifurcation from a uniform state into a homoclinic orbit
Both have translational invariance in the direction of localization
Such bifurcations can be analysed using

center manifold reduction (e.g. Kirchgassner 1988)
or
normal mode approach (e.g. Fu 2001)
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Center manifold reduction:

ou 0
— = L(=——)u= Au+ N(u).
X, L 6x2)u u+ N(u)
Look for a solution of the form u(xi, X2) = w(xz)e™™,
then localization takes place when 0 becomes a triple eigenvalue

(a) (b) ()

Im « Im « Im «

ay
Re a Re a Re a
—qg —Q Qy [e3] —Qiy [e3] —Qry [e3]
~

However, current problem cannot be written in the form

ou . 0

= (E)U‘
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Bifurcation condition for localised necking

If
1 1
u:7¢27 VZ_?d’r,
then
2 3 3 1
o\ Grr — ?(15”1’ + ﬁ(ﬁ” - r*3¢r +28 | brzz — 7¢rzz + VPzzzz = 0,
where

o= Apzpz >0, 28 = Ao + Aszaz — 2Az033 — 242332, 7 = Aszezz > 0.

There is no translational invariance in the r-direction, hence use normal
mode approach.

Ja(r)

Look for a solution ¢(r, z) = rJi(kr)S(kz). SQL/\ /\ A A
-0_2| v 1\/ * \fﬂ \35 '
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The bifurcation condition can be factorised:
Bifurcation condition for extensional modes (A)

_—— T
—_— T

Bifurcation condition for flexural modes (B)
/\_/\/
/_\/\_/

Expanding (A) to order (kh)?, we obtain
B +7) + o {0 — @8+ (k) 4 =0,
24
Conjecture: the bifurcation condition is

1(B+71)=0, = pB+~=0.
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Interpretation of the bifurcation condition

General biaxial tension of a membrane:
S*iw()\ A2) S*iw()\ X2), S3=0
1_8)\1 1,1\2)s 2_8)\2 1,1\2)s 3 = U,

where w(\1, o) = W(A1, do, A7 TA;).
Equibiaxial tension (= all-round tension) corresponds to A1 = X2 = A.

The bifurcation condition for necking, 8 + v = 0, is equivalent to

0S1(A1, A2)

oM =0

A=Ao=A
Note that
dSi(\, )
dx
Thus, the condition for necking does not coincide with the limit point in
all-round tension.

LHS #
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Comparison with localized bulging in a rubber tube

fixed axial force fixed ends/length

The bifurcation condition is J(P, N) = 0 where

9P 9P
ov Oz
J(P,N) = | l
N  ON
ov Oz
which reduces to
ﬁ =0 when N is fixed or aN = 0 when P is fixed.
av d\;
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For biaxial tension, we may compute

s, 88
Iy Oxp

J(S1,S) =
s,  aS,
axn;  Oxp

Does the bifurcation condition for localized necking correspond to
J(S1 s Sz) =0at A = /\2?

No, since the latter gives

08, 08\ _o . (98, 08\ _dS0u) _
(am_aM)M_MO’ o (6A1+0>\2)M_A2 Y

1 1
TK instability Limit point
TK instability = Treloar & Kearsley instability:

Treloar (1948, PRS), Kearsley (1986, IJSS)
plane-strain version by Ogden (1985, IJSS)
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A typical strain energy function admitting necking solutions:
2
W =8 (X/2 0% + A2 = 3) + L2\ AT 4 ATE - 3).
2

with pz = 1%,111, my =2:

)\neckingl = 2327 Aneckingz =7.49
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Weakly nonlinear analysis
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Weakly nonlinear analysis

From linear results we deduce that k* ~ (A — \) for small k, and

u = ki (kr)S'(kz) ~ kds (kr),

v= —17 {i(kr) + ke (kr) s S(kz) ~ K2G(kr).

Thus, if A = A + €Xo, then k = O(+/€) and dependence on r is through
& = y/er, and the near-critical solution takes the form

u=Ve{A©)+aP(z)+- },

V=e¢ {v(1)(§,z) +ev®(,2) 4+ - } .
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u=ve{AQ) +aP€2)+- -},
e[+ e
Amplitude equation:

d 1 d / / d 2 " / 1 _
L SEP(O)+ 0P (©) + e g P (E) + A (A ) - EA(s)) o,

where P(¢) is defined by

P(¢) = %(gA(g))’ = %v‘“(&,—g) « deformed thickness.

BCs:
as £€—0, A(¢),A"(¢) =0

as € oo, A€) = % — arKi(—ci o).
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Planar limit:

Setting all terms multiplied by £, ;—2 etc to zero, we obtain
/! * 1 * 52 /

which has an explicit localised solution P(¢) ~ sech?().

General case:

Finite difference solution:
(initial guess = planar solution divided by 1 + £2)

49 Squares given by

P() = bgz%sechz(cf).
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Abaqus simulations

Yibin Fu Prague-2024



Fully nonlinear numerical simulations

Imperfections at the centre or edge:

’ v Log Straln
6e+00

i ]

1=2.36 T3
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1348400
+1260400

r=2.25
+1i8er00
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1T0zer
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)L225
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700601

W= 2‘“(A2+A2+A2—3)+“2(A LR -3,

with Mz/;ﬁ = 1/80
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Comparison between theory and simulations:

(@) 3
—Theoretical
28 o FEA
2.6 m2=2
A
24
2.2
2
0 10 20 30 40

/M

2
W =8u (A2 + M2 4012 _3) + mi;(xq"z FATe 4 AT _3).
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Initiation — growth — propagation (Maxwell state):

A
0.25} A=
growth
0.2 |
oYal l
0.1 J } J 'propagation
0.051- r
L L L L L L L L
-20 -15 -10 -5 5 10 15 20
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A typical Abaqus simulation video
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Necking propagation (Maxwell state)

e transition region replaced by a sharp interface at
R=R

e )\, and )} are both constant

A uniform circular region (“— phase") surrounded by an annular outer region
(“+ phase").

Total energy:

£ = 1R,?w(L

1
) 7) +

2 VAT VA
Require £ to be stationary w.r.t. A;, A} and R;:

o€ o0& o0&
O, Gy T OR;

A
/ W()\17 )\1 )RdR PA A1‘R A-

Ri
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1D reduced model
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1D reduced model

Variational-asymptotic method first proposed by Berdichevskii (1979).
See also Audoly & Hutchinson (JMPS, 2016), ...

Homogeneous solution: r = uR, z = \Z, and so
M=X=p As=A\
At least in the early stage of necking formation, we may assume that
r=p(S)R, z=XS)Z, S=¢R, (%)
where A\(S) is found from the incompressibility condition.
For a consistent solution, we add correction terms:

r(R,Z) = e 'u(S)S+:u'(S,2)+ 0%,
Z(R,Z) = MS)Z+:v'(S,2)+ 0.
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Step 1: Fix x and minimize w.r.t. u* and v*. The result is

A
Eraly] = / L(R, j, ', 1I")dR,
0

where )

roony Hw; ()‘7 :U')
Step 2: Minimize w.r.t. u; the associated Euler—Lagrange equation then
yields the 1D model:

X(R)Z) R.

2
o~ e ) * e () =

This equations recovers the bifurcation condition and the weakly nonlinear
theory exactly.
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Conclusion

e Axisymmetric necking analysed for the first time;

e The entire necking process, from initiation, growth, to propagation, can
be described analytically or semi-analytically;

e Bifurcation condition for axisymmetric necking derived, not given by
J(Si, S3) = 0;

e Near-critical analysis conducted, amplitude equation solved using FD;

e A 1D model derived, with predictions in excellent agreement with
Abaqus simulations;

e Current work: experimental verification.
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