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Since the early days of mechanics, experiments have demonstrated that for many
materials, the stress-strain relationship is nonlinear, even in small-strain
regimes where linearized elasticity is typically assumed to hold.

Bernoulli’s 1687 gut string experiments with
ϵ ≤ 0.07.

Grüneisen’s 1906 cast iron experiments with
ϵ ≤ 0.004.

Goal: Propose a mathematical asymptotic framework where nonlinear constitutive
relations between stress and linearized strain rigorously emerge as leading-order
approximations to those describing finite elastic bodies.
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χ

F = ∇χ

T = g(F )

E = F tF − I

S̄ = f(E)

Tn

B

S̄ = (detF )F−1TF−t

Classical Cauchy elasticity.

Linearized elasticity. If δ0 := |F − I| ≪ 1, then:

E = ϵ+O(δ20), ϵ =
1

2
(F + F t)− I = O(δ0),

S̄ = fE(0)[ϵ] +O(δ20).

The response of a fixed material is described by the classical linearized elastic
stress-strain relationship

σ = C[ϵ],

to leading order, as δ0 → 0.
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Rajagopal and collaborators (early 2000’s) introduced implicit constitutive
relations describing elastic bodies taking the form, e.g.,

h(E, S̄) = 0.

If δ0 := |F − I| ≪ 1, then it was argued that since E = ϵ+O(δ20), the above fixed
relation is asymptotically equivalent to

h(ϵ, S̄) = 0, as δ0 → 0.

However, if h(0,0) = 0 and hS̄(0,0) is invertible, then by the implicit function
theorem, there exists f such that for all δ0 sufficiently small,

h(E, S̄) = 0 ⇐⇒ S̄ = f(E).

Moral: By selecting δ0 as the asymptotic parameter governing limiting behavior, a
fixed constitutive relation is always approximated by a linear relation between
stress and linearized strain, to leading order, as δ0 → 0.
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A different asymptotic parameter. Consider

E = ϵ+
1

2
ϵ2, ϵ = −1 + (1 + 2E)1/2,

E = δa(1 + |aS̄|p)−1/pS̄,

with δ ≪ 1.

Note that δ bounds the magnitude of the strain across a range of
values for the stress variable S̄.

Suppose we take δ ≪ 1 as the asymptotic parameter, and thus, we are considering
a family of constitutive relations. Since |E| ≤ δ for all S̄, we have

ϵ = E +O(δ2).

We conclude that

ϵ+O(δ2) = δa(1 + |aS̄|p)−1/pS̄ =⇒

ϵ = δa(1 + |aS̄|p)−1/pS̄ +O(δ2)

Moral: If δ is the asymptotic parameter determining the limiting behavior for a
family of constitutive relations, then these relations can be described by
nonlinear relations between stress and linearized strain, to leading order, as
δ → 0.
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Definition

For small δ̃ > 0, and each δ ∈ (0, δ̃), let Uδ ⊆ B(0, 1/2) and V be open subsets of
Sym.

We say that a collection of bounded Lipschitz continuous functions

fδ : Uδ × V → Sym,

indexed by δ ∈ (0, δ̃) is a family of strain-limiting functions with limiting
small strains if: there exist C0, C1 > 0 and D0 > 0, independent of δ, such that
for all δ ∈ (0, δ̃),

∀E, S̄, |fδ(E, S̄)| ≤ C0δ, ∀E1 ̸= E2, S̄,
|fδ(E2, S̄)− fδ(E1, S̄)|

|E2 −E1|
≤ C1,

∀E, S̄1 ̸= S̄2,
|fδ(E, S̄2)− fδ(E, S̄1)|

|S̄2 − S̄1|
≤ D0δ.

Example. fδ(S̄) = δa(1 + |aS̄|p)−1/pS̄, or more generally,

fδ(E, S̄) = δf1

(
E/δ, S̄

)
where f1 : U × V → Sym is a bounded Lipschitz continuous function.
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Theorem (Rajagopal-R. 24)

Let fδ =: Uδ × V → Sym be a family of strain-limiting functions with limiting
small strains. Let S̄ ∈ V . Assume that there exists r > 0 such that for each δ > 0
sufficiently small, there exists Eδ ∈ Uδ such that B(Eδ, rδ) ⊆ δU and

Eδ = fδ(Eδ, S̄).

Let

Cδ := I + 2Eδ, F δ := RδC
1/2
δ , ϵδ :=

1

2
(F δ + F T

δ )− I,

σδ :=
1

2

(
F δS̄ + S̄F T

δ

)
.

with |Rδ − I| < C2δ. Then for all δ sufficiently small, (ϵδ,σδ) ∈ Uδ × V , and

ϵδ = fδ(ϵδ,σδ) +O(δ2), as δ → 0,

where the big-oh term depends on C0, C1, C2, and D0|S̄|.
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Example.

Suppose that

fδ(E, S̄) =
1 + ν

Eδ
S̄ −

ν

Eδ
(trS̄)I, (E, S̄) ∈ B(0, δb)×B(0, c),

with a density-dependent generalized Young’s modulus,

Eδ = δ−1E0

[
1 + aδ−1(ρR/ρ− 1)

]−1

= δ−1E0

[
1 + aδ−1([det(I + 2E)]1/2 − 1)

]−1
.

By the Theorem, we can conclude that

ϵδ = δE−1
0

[
1 + aδ−1tr ϵδ

][
(1 + ν)σδ − ν(trσδ)I

]
+O(δ2).

The leading order constitutive relation (and variants) have been studied by a
number of authors recently including: Rajagopal 21’, Itou-Kovtunenko-Rajagopal
21’, Murru-Rajagopal 21’, Murru et al 22’, Prusa-Rajagopal-Wineman 22’,
Vajipeyajula-Murru-Rajagopal 23’, and Jeyavel et al 24’.
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[
1 + aδ−1(ρR/ρ− 1)

]−1

= δ−1E0

[
1 + aδ−1([det(I + 2E)]1/2 − 1)

]−1
.

By the Theorem, we can conclude that

ϵδ = δE−1
0

[
1 + aδ−1tr ϵδ

][
(1 + ν)σδ − ν(trσδ)I

]
+O(δ2).

The leading order constitutive relation (and variants) have been studied by a
number of authors recently including: Rajagopal 21’, Itou-Kovtunenko-Rajagopal
21’, Murru-Rajagopal 21’, Murru et al 22’, Prusa-Rajagopal-Wineman 22’,
Vajipeyajula-Murru-Rajagopal 23’, and Jeyavel et al 24’.
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Example.

Suppose that

fδ(E, S̄) = δf1(S̄)

= δ∂S̄W ∗(S̄),

for some twice continuously differentiable function W ∗ : V → R. Then by the
Theorem

ϵδ = δ∂σδW
∗(σδ) +O(δ2).

Suppose that V is convex and W ∗ is a convex function. Then the leading order
relation can be inverted yielding

σδ = ∂ϵδ [δW (ϵδ/δ)].

In particular, the Theorem rationalizes hyperelastic theories for infinitesimal
displacement gradients that use non-quadratic stored energies of the linearized
strain.
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Open questions.

Extend this framework to nonlinear viscoelastic constitutive relations between
stress and linearized strain.

Extend this framework to elastic or viscoelastic rods and shells.

For a fixed external body force b, Dirichlet conditions on the boundary, and
for all δ sufficiently small, does solvability of the “linearized” equilibrium
equations,

0 = DivσL,δ + b, σT
L,δ = σL,δ,

ϵL,δ = fδ(ϵL,δ,σL,δ),

imply solvability of the fully nonlinear equilibrium equations,

0 = DivSδ + b, SδF
T
δ = F δS

T
δ ,

Sδ = F δS̄, Eδ = fδ(Eδ, S̄δ),

with

Eδ = ϵL,δ +O(δ2), S̄δ = σL,δ +O(δ), Sδ = σL,δ +O(δ),

as δ → 0? Analogous results are known to hold for classical linearized
elasticity (as δ0 → 0), see, e.g., Stoppolli 54-55’.
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Thank you for your attention!
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