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Total bending of elastic membranes

measure the total bending of a surface Σ2 ⊂ R3 by the Willmore energy

W(Σ) :=
1

4

∫
Σ

|H⃗|2dµ,

with H⃗ the mean curvature vector

noncompact invariance group & Sobolev critical

appears in various variational models:

nonlinear plate theory

image restoration

general relativity

biological membranes (↗ Canham–Helfrich model)

min

∫
Σ

(β
2
(H − H0)

2 + γK
)
dµ

subject to Area(Σ) = a,Vol(Σ) = v A red blood cell.a

aDatabase Center for Life Science (DBCLS) at commons.wikimedia.org
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Minimal bending

if µ is an integral 2-varifold in R3 with mean curvature H⃗ ∈ L2(µ;R3), i.e.,∫
divµ X dµ = −

∫
X · H⃗ dµ ∀X ∈ C 1

c (R3;R3),

define

W(µ) :=
1

4

∫
|H⃗|2 dµ

W(µ) ≥ 4π with equality iff µ = H2 rS2

[Li–Yau ’82]: if Σ is smooth and W(Σ) < 8π,

then Σ is embedded

W ≥ 8π
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A global regularity result

Theorem (R.–Scharrer, 2024)

Let µ be an integral 2-varifold with finite mass and H⃗ ∈ L2. If W(µ) < 6π, then

µ can be parametrized by a conformal W 2,2-Lipschitz embedding.

global regularity result in the critical regime ↗ [Allard ’72]

threshold is sharp by the double bubble

if µ is the mass of an integral 2-current T with ∂T = 0,

then W(µ) < 8π suffices

starting point for regularity theory for varifolds à la

[Riviére ’09]:

δW(Σ) = ∆H⃗ + ( 12 |H⃗|2 − 2K )H⃗

Thank you for your Attention!
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