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Microstructure evolution

@ Directional solidification, dendritic growth, ...

[Provatas & Elder, 2010]
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Microstructure evolution

@ Spinodal decomposition — microstructure coarsening by diffusion
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Thermal ageing of tin—lead solder at 150° [Ubachs, Schreurs & Geers, JMPS 2004]
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Microstructure evolution

@ Martensitic transformation

nompad =

[Zhu et al, 2017]
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Phase-field method: diffuse-interface modelling approach

— tracking of interfaces is avoided (interfaces are diffuse)
— microstructure evolution is simulated on a fixed (but fine!) computational grid
— various physical phenomena can be included

Some literature references on the phase-field method:

> general reviews [Chen, 2002; Moelans et al, 2008; Steinbach, 2009; Provatas & Elder, 2010; Wang & Li, 2010]

> phase-field method for martensitic transformation [Wang & Khachaturyan, 1997; Artemev et al, 2000; Wen et al,

2000; Levitas & Preston, 2002; Ahluwalia et al, 2008; Shu & Yen, 2008; Lei et al, 2010; Hildebrand & Miehe, 2012;
Borukhovich et al, 2014; Schoof et al, 2019; Liu et al, 2024, ...]

finite-element-based finite-strain phase-field models [Levitas et al, 2009; Clayton & Knap, 2011; Hildebrand &
Miehe, 2012; Mosler et al, 2014; Tima et al, 2016, 2018, 2021; Bartels & Mosler, 2017; Kiefer et al, 2017; Basak & Levitas,
2019; Rezaee-Hajidehi & Stupkiewicz, 2020, 2021]
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Martensitic transformation in CuAINi during nano-indentation
[Tdma, Rezaee-Hajidehi, Hron, Farrell & S, CMAME 2021]
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Fine mesh is needed — large-scale problems

2.5 million 8.1 million 19 million 63.4 million 150 million

¢ = const
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[Tama et al, 2021]
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So why not to increase (7
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[Tima & S, 1JSS 2016]
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Aim of our work

o Can we improve computational efficiency of the phase-field method?

sharper interfaces — larger element size — reduced computational cost
keeping simplicity (e.g., avoid XFEM)

— sharp phase-field method [Finel et al, 2018] — but relying on the finite difference method
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Outline

@ Conventional phase field method
© LET: lamination-based treatment of weak discontinuities

© LET-PF: hybrid diffuse-semisharp approach for evolving interfaces

Stanistaw Stupkiewicz (IPPT PAN) Towards a sharper phase-field method



Outline

@ Conventional phase field method
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Prototype phase-field model

@ Assumptions:

— two phases
— viscous evolution

o Constitutive framework for each phase: elasticity with eigenstrain (i = 1, 2)

(3 (2

1
Fi(e):F;Q+§(€—€t)~ﬂ_4i(s—€§), o=Lie—¢€!)
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Prototype phase-field model
@ Assumptions:

— two phases
— viscous evolution

o Constitutive framework for each phase: elasticity with eigenstrain (i = 1, 2)

(3

1
Fi(e):EQ+§(€—€t‘)'Li(€—€§)y o =Li(e &)

@ Phase transformation: continuous order parameter ¢ = volume fraction (0 < ¢ <1)
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Prototype phase-field model

@ Assumptions:

— two phases
— viscous evolution

o Constitutive framework for each phase: elasticity with eigenstrain (i = 1, 2)
1
Fi(e)=F;Q+§(€—€§)~Li(s—€§), o=1L;(e—¢g})

@ Phase transformation: continuous order parameter ¢ = volume fraction (0 < ¢ <1)

o Bulk free energy density

Fg(e,¢) = F° + %(s —e')-L(e—¢")

Interpolated properties: e'(p) = (1— p)el + ¢el
L(¢) = (1- )L + oL
F(¢) = (1 - ¢)F{ + oFs
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Prototype phase-field model

@ Assumptions:

— two phases
— viscous evolution

o Constitutive framework for each phase: elasticity with eigenstrain (i = 1,2)

1
Fi(€)ZFZQ+§(€—€§)'Li(€—€§)v o =Li(e—¢})

@ Phase transformation: continuous order parameter ¢ = volume fraction (0 < ¢ <1)

@ Bulk free energy density
1
Fp(e,¢) = FO + 5(5 —€") - L(e —€")

Interpolated properties: e'(¢p) = (1 —h(p))el + h(o)eh R(0) =0, k(1) =1, K (0)=h'(1)=0
L(¢) = (1—h(¢))L1 + h(¢)L2
FO(¢) = (1—h(d)FY + h(¢)Fy
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Prototype phase-field model (2)
@ Bulk free energy density

Fu(e,6) = FO(6) + ~(c — €(6)) - L(d)(e — '(6))

2
o Interfacial free energy density (so-called double-well potential) P
6 3¢
Fr(¢, V) =1 (Z $*(1-9)" + 3IV¢I2) \ /

¢
o Total free energy density ‘0 !

F(57¢7 vd)) = FB(€7¢) + FF(¢5V¢)
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Prototype phase-field model (2)
@ Bulk free energy density

Fiae, 6) = F(6) + g (e — '(6)) - Lg)(e — '(9))

o Interfacial free energy density (so-called double-well potential) P

Fr(6,V6) =7 (% (11— )" + %wﬁ) \ /

¢
@ Total free energy density ‘0 !

F(E7 ¢7 qu) - FB(sa (b) + FF(¢) V¢)
e Dissipation potential (of viscous type)
T
D(d) = 5-9

+ variational framework — complete model
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Variational framework

@ Potential energy functional
Elu, d] = Flu, o] + O, Flu,d] = /B F(Vau, 6, V) dV

— Q[u] — potential of external loads, e.g., Q[u] = — thB t*-udS

@ Global rate potential
i by, 6] = s ] + D6 Did) = [ D) av
@ Minimization problem [Miehe, 2011; Hildebrand & Miehe, 2012; Tiima, Petryk & S, 2016, 2018]
{1, 9} = arg st L, b3 u, ¢
u,

0411 =0 — equilibrium equation (virtual work principle)
94,11 =0 — evolution equation for ¢
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Outline

© LET: lamination-based treatment of weak discontinuities
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Laminated element technique (LET)

[Dobrzanski, Wojtacki & S, Comput. Struct. 2024]

2 pammESE

~ NEA
\N\N\ %
71 {‘Tint

o Interfaces defined implicitly by a level set function ¢
o Total free energy (FE discretization + LET)

-3 (5

i=1 “weT; V¥

F, dV) + > / Fdv
WETint ¥ ¥
> microstructure of the laminate (7, IN) depends on the position of the interface within the element

» overall (homogenized) bulk energy of simple laminates within laminated elements, w € Tint
F=F(e,n,N) = (1—-n)F +nF
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LET performance: elastic inclusion problem

relative error in energy norm, €g

convergence with mesh refinement
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Outline

© LET-PF: hybrid diffuse-semisharp approach for evolving interfaces
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LET-PF: combining the phase-field method with LET

o Total free energy
F=Fs+Fr

o Interfacial free energy — diffuse treatment of interfaces by the phase-field (PF) method
6 5 5 3L 9
Jr = E FFdV Fr=v(50"(1-9¢)"+ Ve
weT ¢ 2

o Bulk free energy — semisharp treatment of interfaces by LET

JB = ( /F dV) /FdV
i=1 “weT; WETint

> the order parameter ¢ plays the role of a level set function (¢ = % — interface)

@ Variational framework _
II=F+D — min
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LET-PF: combining the phase-field method with LET
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Evolving (vanishing) circular inclusion: conventional phase-field method

@ evolution driven by elastic strain energy, large time increments, coarse mesh (2D)

@ analytical solution of the reference 1D sharp-interface problem
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Evolving (vanishing) circular inclusion: LET-PF

@ evolution driven by elastic strain energy, large time increments, coarse mesh (2D)

@ analytical solution of the reference 1D sharp-interface problem
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Evolving (vanishing) circular inclusion: effect of mesh refinement

@ elastic strain energy as a function
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@ error due to the finite thickness of the diffuse interface in the conventional phase-field method

@ the error is reduced thanks to the semisharp LET method
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Evolving (vanishing) circular inclusion: effect of mesh refinement

@ elastic strain energy as a function of inclusion radius, h/{ = const
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@ error due to the finite thickness of the diffuse interface in the conventional phase-field method

@ the error is reduced thanks to the semisharp LET method
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Evolving inclusion in a constrained domain: effect of mesh size

e LET-PF vs. conventional phase-field (PF), i/¢ = const — initial state
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Evolving inclusion in a constrained domain: effect of mesh size

e LET-PF vs. conventional phase-field (PF), h/¢ = const — final state

05
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Evolving inclusions in a constrained domain: effect of mesh size

e LET-PF vs. conventional phase-field (PF), h/¢ = const
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Summary

In short:

@ Proof of concept of a new approach to phase-field modelling of microstructure evolution

Towards a sharper phase-field method



Summary

In short:

@ Proof of concept of a new approach to phase-field modelling of microstructure evolution

In more detail:

@ LET-PF, a hybrid diffuse-semisharp approach combining

@ phase-field method — interfacial energy contribution

@ laminated element technique (LET) — bulk energy contribution
@ Features:

simple (element-based implementation)
for the problems studied, LET-PF exhibits higher accuracy than the conventional phase-field method )

Even more details:

J. Dobrzanski, K. Wojtacki & S. Stupkiewicz, Lamination-based efficient treatment of weak discontinuities for
non-conforming finite element meshes, Comput. Struct. 291, 107209, 2024.

J. Dobrzanski & S. Stupkiewicz, Towards a sharper phase-field method: A hybrid diffuse-semisharp approach for
microstructure evolution problems, Comp. Meth. Appl. Mech. Eng. 423, 116841, 2024.
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