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&

Boltzmann -equation (1872)

& f + x .Axf = q(f , f) = f = f(x ,
v

,

t) = 0

xEIR ,

wEIR

- density of particles
in phase space

Q(f , f)(x
,
r .

H = Sdafdw Blu-v -
n)(f' f - f + 1
- ↓ ↓

2 collision Gain Loss
IRS S

Kernel term
term

f = f(x , v ,
t) , f) = f(x ,

wit) , fx = f(x ,m , t) , fx = f(x , y - +)



v= v - [(v-y -w]w
,

weS

v = v + ((w
-
) .w]w v, Initial

velocities

wir Final
velocities

v +V =
v +r

B(w- , w) depends

on

the interaction

between
the

Motential
toeliding particles



~Boltzmann equation (Assumptions

· Only binary collisions.

· Instantaneous
elastic

collisions .

·

Microreversibility . (W+
w + ri)

· Boltzmann choos. (Uncarrelated colliding particles

Lanford (1975),
Collagher ,

Saint-Raymond .

Texier (2013)

Polvirenti ,

Simondla (2017)
,
Deng .

Mani . Me
(2013).



Boltzmannequation ("Fluid mechanics" for

varified gases).

Boltzmann-Grad
limit

Na=1

N = particle
density (N=tides y

a
= particle

radius

N+ ,
a +

0 ,

Na - o

(the particles
fill a very

small fraction
of the

available space) .



-

altzmann equation /Conservation
laws

,

Fluid mechanics)

g(x , +) = ffdy , Vi(X , +) = xifdy Idensity ,

mean
velctas

3

e(it) = Exit-Vifdx
lintered energa

Mij = Si-Vill-Yfdy
, quaiki
i

(Stress tensor ,

heat flux)



-

altzmann equation /Conservation
laws

,

Fluid mechanics)

1)
= 0

(Continuity equatia

IsVil +EgVY
+ M=

(Moments

+ ye)+ (v) + e) + q +zy)
(Energy equation (

Not addedeter
for g .

V .
e .

Mr =
M
.g
If

9) = 9 , (f)



Boltzmannequation (H-Theorem)

& 181) = - DH) (H =Sflogifidx-
"entropy"

IR

DHf)
=SdvddBm"dissipation"

D(f) = 0 f= - , 90
VER

distribution) .
TI O

(Maxwelliam



The 11-Theorem allows toeave migerously

Maxwelliam
toeilibrium (i . e.-

Convergence

collision
Kernels

B -

-

distribution) for many

-

Boltzman
(ef = &Iff)

.

* Momogeneous

Boltzmann (Gef + vaxf
= &(f , f)

* Non-homogeneous

·
XETTh ,

X-2R Celastic
boundary conditions)

.

(local stability
of the

Maxwellian

Arkeryd ,

Cercignani ,

Ukai , Villani.
Morhot ,

Gua ,

Strain ....



All these results apply to closed euestems

What happens
in queen enters

?

Homoenergetic
solutions

f(x ,
w

,

+) = g(r - 3(x ,
t) ,
t)

Same distribution of velocities
at each point.

(Only the mean
value of

the velocity changes).

Truesdell ,
Galkin (1960's) .



Homeenergetic solutions
-

I In
the Boltzmann description

of a gas ,

each "macroscopic"

element contains
a very large-

number of molecules
travelling

at different speeds.

In the homoenergetic
solutions ,

thedistribution
of

velocities is
the same

at
each point , except for

-

aEntranslation
that depends on

each point

f(x ,
v

,

z) = g(u - z(x ,
t) , t)



Momoenergetic solutions
-

tricedistributionof this vere

particular
form ? f(x ,

v
. E) = g(r-3(x ,) ,

t)

3(x ,+) =
M(t) X .

MA) E Moxy
R

↓ R = 0 , Ggwit-MW
= all

w = v
- 3(x ,

t)



Classification ofMoregetic
tio

the solutions
of

↓M = 0 .

MIA

Jordan canonical form (R .

L
.

James .

A .

Note .

YI



Momoenergetic solutions
(Examples)

Simple shear :
Azaen ,

a .
m = o

,
a =
Ke ,

n = en

-

2g-kw ,Gug
= Q(9 . 9)



Homoenergetic solutions (Examples)
-

#MixedIddilatationand
shear : An an

a

29 + W
=



Momoenergetic solutions (General features)
.

(competing terms)

29 - M(t)w -29 = q(g ,g)(v)
m

Ntrbolic term
Collisions

g(t) = Sgiritidw
/Particle

density).

Global well posedness
(Adaptation

of the
tools

Boltzmann) (Carignani)
.

available for homogeneous

Long time symptotics of
the solutions ?

-



Momoenergetic solutions
-

Ending properties of
thearision

Kernel BIIX-Xe)
,
w)

Q(f , f)(x
,
r .

H = Sdafdw Blu- -
r)(f' f - f ++ 1
u

IR3 S collision

Kernel

The form of Blu-
,

w depends on

the

between
two particles.

interaction potential



Momoenergetic solutions

BIW- , w) is computed studying

between
wa

the collision

-articles. (Newton
equation

Power law patentials (Maxwell)

kr) = ty .

2 : Blu-ra =
blosles(w-

u=

Homogeneous potentials (Homogeneity = w)



Momoenergetic relations (Scaling
properties ,

pri=1)

29 - M(t)w -29 = q(g ,g)(v)

g(t) =Jgdw
(density) ,

11 MHtll = 2(t)

Hyperbolic
term

Eating
M/t) W .Ang = y(t)

29]

Collision
term

Q1g . 9) = y(t)[w]" 29]

Which one
is
the dominant term

lif and ??



Homeanergetic Metations (Scaling propertiessimpleshea. .
as

dominant one

WhichEerm is
the -

Kernel B
.

the collision
of -

on
the homogeneity

dominated case

Collision
u > o

dominated
Hyperbolic
-

Critical
behaviour

u = 0

B(w-v , w) =
b(cos(e) ,

v = 0 (Maxwellian
molecules

4=, s = 3 ,

v=



~Long time asymptotics of homoenergetic
solutions

Simple shear.

Maxwellian molecules (8 = 0)

(E) 2g-Kw ,Gug
= Q(9 . 9)

glwid = g .
r , Sgolwiwdw = 0

(w .

0
.
0 .g)

9 . EM-
IIR



v = 0 .
1k)-1s . (small)

Theorem : · Assume -
-

-

solution of IE)
with

-

There exists asimila) ,
for some B = P1K)

> o

the form j(wit) = 2

cunique up
to time translations

t - t + to)

that g(w , a = g .(v)
· Suppose

with Sgarilwidw , puz .

Then ,

the ourresponding

solution
of (E)

satisfies

t -0
39tegleptc ,

t + to) - G(3) as

(for some to EIR)



Hemoenergeticsolutions- Simpleshear Maxwellianmolecule
as

5 (w ,
H) = =

P +

c) - p = p(k)n0

g(t) = Sj, (wit)dw
= g.

(constant) ·

21st

T=Siriwit
d = e

(exponential growth of
the temperature).

* Friction
between

the

different layers (heating)
.

* Energy injected from

"infinity". (Non-equilibrium)



Hemoenergeticsolutions- Simpleshear
Maxwellian molecules

(u = 0

Maxwelliam
=

The self-similar profile
G(9) is

not a-

-
vilibrium

each

balance fails .

(At ea

-Retailed
reaction

and its
reverse

are

are

balanced).

Q(f , f)(x
,
r .

H = Sdafdw Blu-v -
n)(f' f - f + 1

Rs v = 0 - [(v- .w] w
,

was

v = v + ((w
-
) .w]w



Hemoenergeticsolutions- Simpleshear
Maxwellian molecules

(u = 0

Detailed balance (Boltzman
collisions

- 2

fe=-

fafex = fefex
(Balance

of individual

collisions)
.

For thef-similar
solutions

above
,

detailed

-

balance fails 2G + GGx
-
-



feature
commen

Lack of detailed belance is a
-
-

-

-
-

of opensystems
.

-

doe to an

involved balance
of

Stationarity
is

collisions
and transport

* + Additioa

- ti
v

collisions

Detailed balance
Absence of detailed

balance



&
Equation for the muf-similar profite

- BGnInG) - 2w(wax)
= q(G ,

c)(w)

vanishes individually.

None of the terms
-

-

-



Hemoenergeticsolutions -

General case.Maxwellianmotecues
as

-

Existence
and uniqueness

of

-

results -Similar -
that are global

attractors).
-

self-similar
solutions,

shear

Combined Id dilatation and
-

-

-Example :
-

29 + W
=

dilatation and shear

Competition between

(cooling)
Cheating)



Hemoenergeticsolutions . Maxwellianmolecule
as

->

->

Id
↓

ilatation :
(Rate K

, ) =
->

-

->

S<ear :
/Rate (2)

->

,(wit
=
+

as o
if KE > K,

2 = x(k .. kz)

- if KK ,



#stitio so tee

29 + kw
z
Gw

,
g
= Q(g ,g)(w)

[g] %.
[w]" [g]

* If 20
and theI emperature (i . e .

< Iwi)

term becomes more important
the collision

t =a
increases

-

as t - a
IkwaGwg)1919 . 97)

a

the
Increases

* If UXO
and the temperature

dominant as
+- o

shear term
becomes

1kWedwg(x(919 .97) ,

t + o



Hemoenergeticsolutions. Simple
shear. Collision

dominated

(r >0

solutions of Boltzmann
-

Tools
to describe
- dominant are

-

when the collisions are
-

equations

available1
ilbert expansions).

2f + v .Mxf = talf ,
f)

f = fe + af + 2 fz
+ -- -

2 T=T( ,
t)
- Hydrodynamic

fe=-
: g = Salt I equations.
Y = V(x ,z)



Hemoenergeticsolutions imple
shear. Collisiondominated

a

The method of Milbeetexpansions
can

be

time asymptotics

-dapted to study the
-

in
this case

homoenergetic nations
of the-

-1-
,

ax = T
-Ct+, t +0

2T =
al

2

g(r , t)= -
,

++

(Similar results far genera
hamoenergetic

solutions).



↑amoenergetic solutions.Aimple
shear.Meperbolicdeminated

a

29 + kw
z
Gw

,
g
= Q(g ,g)(w)

[g] %.
[w]" [g]

Increasing temperature yields /Q19 .97//KWaGr . 3)

u - 1 -
Frozen collisions

- 150
- ? (Simplified

models).
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&

Backer-Doring
model .

A class of Kinetic
-

-

modelsarising
in polymerization. Ideation

,

bubble

-

-

-egregation, ---

(e) = Clusters of size
1.

.

We =
concentration

of clusters ofI
size I.

(1) =
Monomers

(e) + (e) y+ a, be =
reaction rates

(Aggregation-fragmentation model).



InDining
mode

systea
ODES

infinitely many

= -J
,

12

= &Wit .
- bin .

171

a =
14 .
b = ak + -) ,

(01) ,
0 - 20 - 1)

Ball .

Carr
.

Penrose (CRP ,

1986)

( "Simplest" model of phase
transitions) .



This model describes a

desed" system.

holds.
There is aecreasing

Detailed
balance

-

14

"free energy

F =-[log)
=

↓ (Dissipation
formula

·
possiblegeet

in "supercritical" cases .

(Phase transitions).



-

Becker - Daring models describing en extens
.

with atomization

(a) Becker-Doring

(k) + (1)=
= (k+ 17

(M) -> M(1) -
Atomination (Detailed

balance

fails)
open

& This model

Gre = Jee-Je
,

2 N

I exhibits periodicGan
= Jr

- e

- KNm , M = N+ 1

Gu = - J--
+ Mkm solutions

B
. Page ,

V (2020)

J = R, Me - Wet (Hopf bifurcation).



-

-Becker- Daring model with atomization

-

Oscillatory behaviour of n.lt)



(b) Becker- Doring
with monomer

sources an d
-

-

Source
->

an -Sedimentation
Gr =

Jae-J-r n ,

22 ,
roo ,

bra

= a
Risha-biseliste
,

ap =
k ,

a ((01)
= b = a, (a + f) ,

w -(a)

This model exhibits
also oscillatory behavior

B
. Pega .

A
.

Schlichting ,

B
.

Niethemmer .

I (2012



sources and

(b) Becker- Doring
with monomer

-

-

-edimentation

n -> Rescued ne

h -> Rescaled [Msh=,



inS
(w) + (v)
- (2+mz)

rate)
(f(0 .

a) = for

K(w .
2) = k(z

.2)
(collision

flr . t)
=

density of parfides in
the space

of ratures

co [12
**
(25
*
+ 193

**

(5
*

] - /10 .

374c[(25
+> 135* + 135

** 1257]

Kernel)

KIv .
a) =Gri +15]((r*

+ 133) (Braunion

&
Examples :

1(0 ,
2) = [(r + 17 [IT15]*

(Free
molecular

congulation).

u = %,
X = 12



Evoluchowskicongulationequationsa of the

In the absence of sources,

solutions is
usually

self-similar

& f (u . t) = =/- 3 , 37 f(v-2 . z) +(3
.zida - Sim , 3) f(0 ,

t)f13 ,
t)de

fir =Flo
:
02

k(v . 3) = (wy
+ 135* + 133(25x



·
Thceat+ su

-

Source.

(Natural problem
in many

applications).

sirs ,

there
of sources

However ,

in
the presence

behaviors.

rich structure of

might
be a



~
Ecoluchowski congulation equations(with on

a

* Self-similar
solutions

comparable particles

* Self-similar
solutions

due to the coagulation of

and also the coagulation
of

comparable particles
different

sizes

particles
with very

* "Propagating
Direc

mass

behaviour"

* Critical
cases

with logarithmic
singularities



~oluchowski coagulation equations with source (8)

*/
* Y

Cristian ,

Ferreira , Franco ,
Lukkarinen ,

Nota , V

ARMA .

CMP . JSP ,
AIMP ,

ARMA .

SIMA . PAA .

JPhes A



General remarks
about the study of the behavior

- describinTen
systems.

of Kinetic equations
of solutions --
-

* The dissipation formulas
do notallow

to prove

to equilibrium
convergence

* Richer set of possible
behaviors as

tes

Speriodic
solutions ,

multistability ....

* Addoc methods .

(Bifurcation
theory, Asymptotic

methods,

genera functional andysis
results).



Thanks for your
attention


