(Non-)existence of Phase Transition Solutions for a Quasilinear Elliptic Problem (via Optimal Regularity and Pohozhaev’s Identity)

A stationary Cahn-Hilliard model with the p-Laplacian: radial solutions and pattern formation

Peter Takáč
Universität Rostock
D-18055 Rostock, Germany

peter.takac@uni-rostock.de
http://www.math.uni-rostock.de/
forschung/AngAnalysis/index.html

Pavel Drábek and Raúl F. Manásevich

Yavdat Sh. Il'yasov

Time-dependent Cahn-Hilliard equation:

$$
\begin{equation*}
u_{t}=\Delta\left[-\varepsilon^{p} \nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+W^{\prime}(u)\right] \tag{1}
\end{equation*}
$$

$$
\text { for } x \in \Omega \text { and } t>0
$$

subject to the Neumann (i.e., no-flux) boundary conditions

$$
\begin{aligned}
& \quad|\nabla u|^{p-2}(\nu \cdot \nabla) u=0 \quad \text { and } \\
& (2) \quad(\nu \cdot \nabla)\left[-\varepsilon^{p} \nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+W^{\prime}(u)\right]=0 \\
& \quad \text { at } x \in \partial \Omega \text { for } t>0,
\end{aligned}
$$

where $1<p<\infty, \varepsilon>0$, and $W: \mathbb{R} \rightarrow \mathbb{R}$ is
a given potential function of class C^{1} whose first derivative might be only Hölder-continuous. Semilinear case $p=2$ is well-known; see, e.g.,
R. Temam (monograph by Springer-Verlag).

We abbreviate by $\quad \Delta_{p} u \stackrel{\text { def }}{=} \nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)$ the well-known p-Laplace operator; of course, $\Delta_{2} \equiv \Delta$ is the (linear) Laplace operator.

Material occupies a bounded domain $\Omega \subset \mathbb{R}^{N}$ with a sufficiently smooth boundary $\partial \Omega$.

If W is of class C^{2} then the boundary conditions (2) are equivalent with the Navier boundary conditions

$$
\begin{equation*}
(\nu \cdot \nabla) u=(\nu \cdot \nabla)\left(\Delta_{p} u\right)=0 \tag{3}
\end{equation*}
$$ at $x \in \partial \Omega$ for $t>0$.

Classical choice of W : double-well potential $W(s)=\left(1-s^{2}\right)^{2}$ for $s \in \mathbb{R}$
which attains global minimum at two points, $s_{1}=$ -1 and $s_{2}=1$ (Cahn and Hilliard).
These points of minimum are nondegenerate, with $W^{\prime}(\pm 1)=0$ and $W^{\prime \prime}(\pm 1)=8>0$.

Entirely different behavior of the stationary solutions satisfying
(4) $\quad-\varepsilon^{p} \Delta_{p} u+W^{\prime}(u)=0 \quad$ for $x \in \Omega$;
(5)

$$
(\nu \cdot \nabla) u=0 \quad \text { at } \quad x \in \partial \Omega
$$

for classical linear diffusion $(p=2)$ and degenerate nonlinear diffusion $(p>2)$.

Degenerate nonlinear diffusion ($p>2$) exhibits a greater variety of stationary solutions.

One can observe the same phenomenon for classical linear diffusion $(p=2)$ if the potential W is modified to $W(s)=\left|1-s^{2}\right|^{\alpha}$ for $s \in \mathbb{R}$, where α is a constant, $1<\alpha<2$.

We focus on problem (4), (5) with arbitrary $p, \alpha>1$. More generally, we consider the potential

$$
W(s)=\left|1-|s|^{\beta}\right|^{\alpha} \quad \text { for } \quad s \in \mathbb{R},
$$

where $p, \alpha, \beta>1$ are constants.
Asymptotic behavior:

$$
\begin{aligned}
& W(s)=\beta^{\alpha}|1-|s||^{\alpha}+\mathcal{O}\left(|1-|s||^{\alpha+1}\right) \\
& \text { for } s \rightarrow \pm 1, \\
& W(s)=1-\alpha|s|^{\beta}+\mathcal{O}\left(|s|^{2 \beta}\right) \\
& \text { for } s \rightarrow 0 .
\end{aligned}
$$

The following constant is important for $N \geq 2$,

$$
p_{N, \beta} \stackrel{\text { def }}{=} \frac{\beta N}{N-1+\beta} \geq 1
$$

One has $p_{1, \beta}=1$ and $p_{N, \beta}>1$ for $N \geq 2$.

$$
W(s)=\left|1-|s|^{\beta}\right|^{\alpha} \quad \text { for } \quad s \in \mathbb{R}
$$ $\alpha, \beta>1$ are constants.

- $W(s)=\beta^{\alpha} \cdot|1-|s||^{\alpha}+O\left(|1-|s||^{\alpha+1}\right)$ as $|s| \rightarrow 1$;
- $W(s)=1-\alpha \cdot|s|^{\beta}+O\left(|s|^{2 \beta}\right)$ as $|s| \rightarrow 0$.

$$
p_{N, \beta} \stackrel{\text { def }}{=} \frac{\beta N}{N-1+\beta} \Rightarrow p_{1, \beta}=1<p
$$

Radially symmetric solutions in a ball
Boundary value problem (4), (5) reduces to
(6)
(7)

$$
\begin{aligned}
&-\varepsilon^{p} r^{-(N-1)}\left(r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+W^{\prime}(u) \\
&=0, \\
& u^{\prime}(0)=0, r<R ; \\
& u^{\prime}(R)=0 .
\end{aligned}
$$

This problem applies to any choice $N \geq 1$.
(8)
(9)

$$
\begin{array}{r}
\varepsilon^{p}\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\varepsilon^{p} \frac{N-1}{r}\left|u^{\prime}\right|^{p-2} u^{\prime}-W^{\prime}(u) \\
=0, \quad 0<r<\infty ; \\
u(0)=-\theta, \quad u^{\prime}(0)=0,
\end{array}
$$

where $u_{0}=-\theta \in[-1,1]$ is given.
Shooting method - three (3) factors:

- reaction (independent from N)
- diffusion (for every $N \geq 1$)
- damping (only for $N \geq 2$)

Case $N=1$.

(Pavel Drábek, U.W.B., Plzen̆, Czech Rep.,
Raúl F. Manásevich, Univ. de Chile, Santiago)

Problem (4), (5) is the boundary value problem for all stationary solutions of the so-called bi-stable equation
(10)

$$
\begin{aligned}
& u_{t}=\varepsilon^{p}\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x}-W^{\prime}(u) \\
& \text { for } 0<x<1 \text { and } t>0,
\end{aligned}
$$

subject to the boundary conditions
(11) $\quad u_{x}=0 \quad$ at $x=0,1$, for $t>0$.

Equations (10), (11) describe the gradient flow for the (total free energy) functional
(12) $\mathcal{J}_{\varepsilon}(u) \stackrel{\text { def }}{=} \int_{0}^{1}\left(\frac{\varepsilon^{p}}{p}\left|u_{x}\right|^{p}+W(u)\right) \mathrm{d} x$,

$$
u \in W^{1, p}(0,1)
$$

$$
1<p \leq \alpha<\infty, W(s)=\left|1-s^{2}\right|^{\alpha}
$$

$1<\alpha<p<\infty, W(s)=\left|1-s^{2}\right|^{\alpha}$.

For $1<\alpha<p<\infty$ we have loss of uniqueness in the initial value problem for the first integral
of eq. (8),
(13)

$$
\begin{aligned}
\frac{p-1}{p} \varepsilon^{p}\left|u_{x}(x)\right|^{p}-W(u(x)) & =\text { const } \\
0 & \leq x \leq 1
\end{aligned}
$$

Denote $p^{\prime}=p /(p-1)$. Then eq. (13) reads (we look for a local solution u)
(14) $\quad u^{\prime}=\operatorname{sgn} u_{0}^{\prime} \cdot\left[p^{\prime}(W(u)-C)\right]^{1 / p}$;
(15) $u\left(x_{0}\right)=u_{0}$.

Here, we take $u_{0}^{\prime}=u^{\prime}\left(x_{0}\right)$ if $u^{\prime}\left(x_{0}\right) \neq 0$
(hence, $\left.W\left(u_{0}\right)-C>0\right)$;
otherwise $C=W\left(u_{0}\right)$ and we may take any number $u_{0}^{\prime} \in \mathbb{R}$.

The right-hand side is locally Lipschitz if $u^{\prime}\left(x_{0}\right) \neq 0$; local existence and uniqueness.

Shifts of the potential W by a constant C.

A stationary solution for $1<\alpha<p<\infty$ which gives a nonperiodic pattern formation:

Function u_{ε} for $m=3$.

A partition of the interval $[0,1]$ with the points
(16)

$$
\begin{aligned}
& 0=y_{0} \leq y_{1}<y_{2} \leq y_{3}<\cdots< \\
& y_{2 k} \leq y_{2 k+1}<\cdots<y_{2 m} \leq y_{2 m+1}=1
\end{aligned}
$$

where $k=0,1,2, \ldots, m(m \geq 0-$ an integer $)$,
(17)

$$
y_{2 k}-y_{2 k-1}=2 \vartheta_{\varepsilon}=2 \varepsilon \vartheta_{1} \quad(>0)
$$

$$
y_{2 k+1}-y_{2 k}=d_{k} \geq 0
$$

1-D case

$\mu(x)$

$p>\alpha=2 / p=2>\alpha>1$

Case $N \geqq 2$.

(Electr. J.D.E., Conf. 17 (2009), 227-254)
The first integral of eq. (8) gets
a damping term $Z(r)$,
(18)

$$
\begin{array}{r}
\frac{\varepsilon^{p}}{p^{\prime}}\left|u^{\prime}(r)\right|^{p}-W(u(r))+\varepsilon^{p} Z(r)=0, \\
0 \leq r<\infty,
\end{array}
$$

where the damping term $Z(r)$ satisfies
(19) $\quad Z^{\prime}(r)=\frac{N-1}{r}\left|u^{\prime}(r)\right|^{p} \geq 0 \quad$ for $r>0$.

Rescaling: We replace r by $\varepsilon^{-1} r$ to get $\varepsilon=1$.

If $u(0)=s_{0}= \pm 1$ (a local minimizer for W) and $u^{\prime}(0)=0$, then the functions

$$
\begin{aligned}
& r \mapsto r^{-1}\left|u^{\prime}(r)\right|^{p-1} \quad \text { and } \\
& r \mapsto r^{-p^{\prime}}(Z(r)-Z(0)):(0, \delta) \rightarrow \mathbb{R}_{+}
\end{aligned}
$$

are monotone increasing, for some $\delta>0$ small. (W is convex in an open interval containing s_{0}.)

From these facts we derive the inequalities

$$
\begin{array}{ll}
(0 \leq) & \frac{1}{N}[W(u(r))-W(u(0))] \\
& \leq W(u(r))-Z(r) \\
& \leq W(u(r))-W(u(0))
\end{array}
$$

(20)
for all $r \in[0, \delta)$, where
$Z(0)=W(u(0))=W\left(s_{0}\right)$.
Applying (20) to (18), we arrive at
(21)

$$
\begin{array}{r}
\frac{p^{\prime}}{N}[W(u(r))-W(u(0))] \\
\leq\left|u^{\prime}(r)\right|^{p} \leq p^{\prime}[W(u(r))-W(u(0))]
\end{array}
$$

for all $r \in[0, \delta)$.

This means the uniqueness or nonuniqueness of a local solution u to equation (8) with the initial conditions $u(0)=s_{0}$
(where s_{0} is a local minimizer for W)
and $u^{\prime}(0)=0$ at $r=0$, depending on
(22)

$$
\int_{s_{0}}^{s_{0}+\zeta}\left|W(s)-W\left(s_{0}\right)\right|^{-1 / p} \mathrm{~d} s
$$

being infinite (forcing uniqueness) or finite (forcing nonuniqueness), respectively: $p \leq \alpha$ (infinite) or $p>\alpha$ (finite).
$N \geqq 2: \quad \mu(x) \equiv \mu(r)$ with $r=|x|$

$d_{0}=0$ if $1<p \leqq \alpha$ (strong diffusion)
$d_{0} \geqq 0$ if $p>\alpha$ (weak diffusion)

$$
d_{0}=0 \quad \text { if } \quad|\mu(0)|<1, \quad \mu(0) \neq 0
$$

3 Factors: reaction
diffusion $(N \geqq 1)$
damping $\quad(N \geqq 2)$

$$
\frac{1}{P_{N, \beta}}=\frac{1}{N}+\frac{1}{\beta}-\frac{1}{\beta N} \leqq 1
$$

Isolated pure state regions ($N \geq 2$)

(Yavdat Sh. Il'yasov, Ufa, Russia)
(Russian Academy of Sciences)
Problem. $\Omega, \Omega_{1} \subset \mathbb{R}^{N}$ bounded domains with C^{2} boundaries, $\overline{\Omega_{1}} \subset \Omega$ and the open set $\Omega_{1}^{\prime}=\Omega \backslash \overline{\Omega_{1}}$ is connected. $\quad u: \overline{\Omega_{1}^{\prime}} \rightarrow \mathbb{R}$ is called a phase transition solution of
(23) $\quad-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+W^{\prime}(u)=0 \quad$ in Ω_{1}^{\prime} if $u \in W^{1, p}\left(\Omega_{1}^{\prime}\right)$ verifies eq. (23) above (in the weak sense) with the Neumann boundary conditions
(24) $\quad \partial u / \partial \nu=0 \quad$ on $\partial \Omega_{1}^{\prime}=\partial \Omega \cup \partial \Omega_{1}$ and the "phase transition" property
(25) $u=-1$ on $\partial \Omega$ and $u=1$ on $\partial \Omega_{1}$.

$$
\left\{\begin{array}{l}
-\Delta_{p} u+W^{\prime}(u)=0 \text { in } \Omega_{1}^{\prime} \\
\frac{\partial u}{\partial v}=0 \text { on } \partial \Omega_{1}^{\prime}=\partial \Omega \cup \partial \Omega_{1}
\end{array}\right.
$$

Theorem.

(Nonexistence of a phase transition solution)
Ω and Ω_{1} as above and $1<p \leq N$. Furthermore, let Ω_{1} be star-shaped with respect to the origin $0 \in \mathbb{R}^{N}$. Then any weak solution $u \in W^{1, p}\left(\Omega_{1}^{\prime}\right)$ of eq. (23) with the Neumann boundary conditions (24), such that $|u|=1$ on $\partial \Omega$, must be a constant $= \pm 1$.

Proof is based on

Proposition 1. (Pohozhaev's identity)
Let $1<p<\infty$. Assume $f \in L^{1}(\Omega)$ possesses derivatives $\partial f / \partial x_{i} \in L_{\text {loc }}^{1}(\Omega) ; i=1,2, \ldots, N$.
Let $u \in C^{1}(\bar{\Omega})$ satisfy
(26) $\quad-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x) \quad$ in Ω
in the sense of distributions in Ω and
$|\nabla u|^{q} \in W_{\operatorname{loc}}^{1,1}(\Omega)$ for some $q \in(1, p)$. Then

$$
\begin{aligned}
& \frac{N-p}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} f(x)(x \cdot \nabla u) \mathrm{d} x \\
& =\frac{1}{p} \int_{\partial \Omega}|\nabla u|^{p}(x \cdot \nu(x)) \mathrm{d} \sigma(x) \\
& -\int_{\partial \Omega}|\nabla u|^{p-2}(x \cdot \nabla u)(\nu(x) \cdot \nabla u) \mathrm{d} \sigma(x)
\end{aligned}
$$

$\delta>0$ small, $\quad 1<p<2$

$$
\int_{0_{\delta}}|\nabla u|^{-(2-p)} d x<\infty
$$

Proposition 2.

(Optimal regularity in weighted $W_{\text {oc }}^{2,2}$)
Assume $1<p<\infty$; if $p<2$ then assume also
Hypothesis. $\nabla u \neq 0$ a.e. in \mathcal{O}_{δ}, for $\delta>0$ small enough, where

$$
\begin{aligned}
\mathcal{O}_{\delta} & =\left\{x \in \Omega_{\delta}^{\prime}: d_{\delta}(x)<\delta\right\}, \\
\Omega_{\delta}^{\prime} & =\Omega \backslash \overline{\Omega_{\delta}}, \quad \Omega_{\delta}=\{x \in \Omega: d(x)<\delta\}, \\
d_{\delta}(x) & =\left\{\begin{array}{cl}
0 & \text { if } x \in \Omega_{\delta} ; \\
\operatorname{dist}\left(x, \Omega_{\delta}\right) & \text { if } x \in \Omega \backslash \Omega_{\delta} .
\end{array}\right.
\end{aligned}
$$

and
(27)

$$
\int_{\mathcal{O}_{\delta}}|\nabla u|^{-(2-p)} \mathrm{d} x<\infty .
$$

Let us construct $\varphi_{\delta}: \bar{\Omega} \rightarrow[0,1]$ as follows: (28)

$$
\varphi_{\delta}(x)=\left\{\begin{array}{cl}
\left(\delta^{-1} d_{\delta}(x)\right)^{2} & \text { if } x \in \overline{\Omega_{\delta}} \cup \mathcal{O}_{\delta} ; \\
1 & \text { if } x \in \Omega \backslash\left(\overline{\Omega_{\delta}} \cup \mathcal{O}_{\delta}\right) .
\end{array}\right.
$$

(a) Then the vector field $|\nabla u|^{(p / 2)-1} \nabla u$ is in the local Sobolev space $W_{\operatorname{loc}}^{1,2}\left(\Omega_{\delta}^{\prime}\right)$ and

$$
\int_{\Omega_{\delta}^{\prime}}\left|\nabla\left(|\nabla u|^{(p / 2)-1} \nabla u\right)\right|^{2} \varphi_{\delta} \mathrm{d} x<\infty .
$$

(b) Moreover, $u \in W_{\mathrm{loc}}^{2,2}(U)$ where

$$
U=\Omega_{\delta}^{\prime} \cap\{x \in \Omega: \nabla u(x) \neq 0\}
$$

and one has

$$
\int_{U}|\nabla u|^{p-2}|\nabla(\nabla u)|^{2} \varphi_{\delta} \mathrm{d} x<\infty
$$

(c) Finally, if $p<2$ then $u \in W_{\mathrm{loc}}^{2,2}\left(\Omega_{\delta}^{\prime}\right)$ and $\nabla(\nabla u)(x)=$ $0 \in \mathbb{R}^{N \times N}$ holds for almost every

$$
x \in U^{\prime}=\Omega_{\delta}^{\prime} \cap\{x \in \Omega: \nabla u(x)=0\}
$$

Consequently, we may write

$$
\int_{\Omega_{\delta}^{\prime}}|\nabla u|^{p-2}|\nabla(\nabla u)|^{2} \varphi_{\delta} \mathrm{d} x<\infty
$$

Remark 3. (The p-Laplacian)
For $1<p<\infty$ we have $\Delta_{p} u$

$$
\begin{aligned}
& =|\nabla u|^{p-2}\left(\Delta u+\frac{p-2}{|\nabla u|^{2}} \sum_{i, j=1}^{N} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right) \\
& =|\nabla u|^{p-2} \sum_{i, j=1}^{N}\left(\delta_{i j}+\frac{p-2}{|\nabla u|^{2}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}
\end{aligned}
$$

with $\left(\delta_{i j}+\frac{p-2}{|\nabla u|^{2}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right)_{i, j=1}^{N}$ uniformly elliptic.

Notice that the entries $A_{i j}=\partial a_{i} / \partial \eta_{j}$ of the Jacobian matrix $\mathbf{A}=\left(A_{i j}\right)_{i, j=1}^{N}$ of the mapping $\boldsymbol{\eta} \mapsto \mathbf{a}(\boldsymbol{\eta}) \stackrel{\text { def }}{=}$ $|\boldsymbol{\eta}|^{p-2} \boldsymbol{\eta}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$,
(29)

$$
\mathbf{A}(\boldsymbol{\eta})=|\boldsymbol{\eta}|^{p-2}\left(\mathrm{I}+(p-2) \frac{\boldsymbol{\eta} \otimes \boldsymbol{\eta}}{|\boldsymbol{\eta}|^{2}}\right), \quad \boldsymbol{\eta} \in \mathbb{R}^{N} \backslash\{0\}
$$

satisfy the ellipticity and growth inequalities, with some constants $0<\gamma \leq \Gamma<\infty$,
(30) $\begin{aligned} \gamma|\boldsymbol{\eta}|^{p-2}|\boldsymbol{\xi}|^{2} & \leq\langle\mathbf{A}(\boldsymbol{\eta}) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle=\sum_{i, j=1}^{N} \frac{\partial a_{i}}{\partial \eta_{j}}(\boldsymbol{\eta}) \cdot \xi_{i} \xi_{j} \\ & \leq \Gamma|\boldsymbol{\eta}|^{p-2}|\boldsymbol{\xi}|^{2}\end{aligned}$
for all $\boldsymbol{\eta} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ and for all $\boldsymbol{\xi} \in \mathbb{R}^{N}$.
$\delta>0$ small, $\quad 1<p<2$

$$
\int_{0_{\delta}}|\nabla u|^{-(2-p)} d x<\infty
$$

Proof of Proposition 2.
Optimal regularity $|\nabla u|^{(p / 2)-1} \nabla u \in W_{\mathrm{loc}}^{1,2}\left(\Omega_{\delta}^{\prime}\right)$

Take $h \in \mathbb{R}^{N}$ with $0<|h|<\delta$. Let $\varphi \in C_{0}^{1}(\Omega), \varphi \geq 0$, be supported in

$$
\Omega_{\delta}^{\prime}=\Omega \backslash \overline{\Omega_{\delta}}=\{x \in \Omega: d(x)>\delta\}
$$

i.e., $\operatorname{supp} \varphi \subset \Omega_{\delta}^{\prime}$.

Hence, the difference quotient
(31)

$$
\delta_{h} \varphi(x) \stackrel{\text { def }}{=} \frac{\varphi(x+h)-\varphi(x)}{|h|}, \quad x \in \Omega
$$

satisfies $\delta_{h} \varphi \in C_{0}^{1}(\Omega)$. Multiply eq. (26) by $\delta_{h} \varphi$ and integrate over Ω,

$$
\int_{\Omega} \mathbf{a}(\nabla u) \cdot \nabla\left(\delta_{h} \varphi\right) \mathrm{d} x=\int_{\Omega} f\left(\delta_{h} \varphi\right) \mathrm{d} x
$$

with the notation $\mathbf{a}(\nabla u)=|\nabla u|^{p-2} \nabla u$.
A simple substitution above yields
(32)

$$
\int_{\Omega} \frac{\mathbf{a}(\nabla u(x+h))-\mathbf{a}(\nabla u(x))}{|h|} \cdot \nabla \varphi(x) \mathrm{d} x
$$

$$
=\int_{\Omega} \frac{f(x+h)-f(x)}{|h|} \varphi \mathrm{d} x
$$

Now we use the Taylor formula
(33)

$$
\begin{aligned}
& \mathbf{a}(\nabla u(x+h))-\mathbf{a}(\nabla u(x)) \\
& =\widetilde{\mathbf{A}}(x ; h)(\nabla u(x+h)-\nabla u(x))
\end{aligned}
$$

with the abbreviation
$\widetilde{\mathbf{A}}(x ; h) \stackrel{\text { def }}{=} \int_{0}^{1} \mathbf{A}((1-s) \nabla u(x+h)+s \nabla u(x)) \mathrm{d} s \in \mathbb{R}^{N \times N}$ and replace the function φ by $\left(\delta_{h} u\right) \varphi$ in (32),
(34)

$$
\begin{aligned}
& \int_{\Omega}\left\langle\tilde{\mathbf{A}}(x ; h) \delta_{h}(\nabla u), \delta_{h}(\nabla u)\right\rangle \varphi \mathrm{d} x \\
& +\int_{\Omega}\left\langle\tilde{\mathbf{A}}(x ; h) \delta_{h}(\nabla u), \nabla \varphi\right\rangle\left(\delta_{h} u\right) \mathrm{d} x \\
& =\int_{\Omega}\left(\delta_{h} f\right)\left(\delta_{h} u\right) \varphi \mathrm{d} x
\end{aligned}
$$

We used $\nabla\left[\left(\delta_{h} u\right) \varphi\right]=\varphi \cdot \delta_{h}(\nabla u)+\left(\delta_{h} u\right) \cdot \nabla \varphi$. We estimate the integrals on the left-hand side in (34) by the inequalities (30), combined with Cauchy's inequality, and abbreviate
(35) $\tilde{a}(x ; h) \stackrel{\text { def }}{=} \int_{0}^{1}|(1-s) \nabla u(x+h)+s \nabla u(x)|^{p-2} \mathrm{~d} s$, in order to get, with $\varphi=\varphi_{\delta}$ from (28),
(36)

$$
\begin{aligned}
& \gamma \int_{\Omega} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \\
& \leq \Gamma \int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|\left|\nabla \varphi_{\delta}\right|\left|\delta_{h} u\right| \mathrm{d} x \\
& +\int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x
\end{aligned}
$$

To estimate the first integral on the right-hand side in ineq. (36), we use
(37) $\left|\nabla \varphi_{\delta}(x)\right|^{2} \leq C \delta^{-2} \varphi_{\delta}(x), \quad x \in \Omega \backslash \partial \mathcal{O}_{\delta}$,
then apply Cauchy's inequality, thus arriving at

$$
\begin{aligned}
& \gamma \int_{\Omega} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \\
& \leq \Gamma C^{1 / 2} \delta^{-1} \int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right| \cdot \varphi_{\delta}^{1 / 2} \cdot\left|\delta_{h} u\right| \mathrm{d} x \\
& +\int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x \\
& \leq \Gamma C^{1 / 2} \delta^{-1}\left(\int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x\right)^{1 / 2} \\
& \times\left(\int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h} u\right|^{2} \mathrm{~d} x\right)^{1 / 2} \\
& +\int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x \\
& \leq \frac{\gamma}{2} \int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \\
& +\frac{1}{2} \gamma^{-1} \Gamma^{2} C \delta^{-2} \int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h} u\right|^{2} \mathrm{~d} x \\
& +\int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x
\end{aligned}
$$

which yields

$$
\begin{aligned}
& \int_{\Omega} \tilde{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \leq \\
& C(\Gamma /(\gamma \delta))^{2} \int_{\mathcal{O}_{\delta}} \tilde{a}(x ; h)\left|\delta_{h} u\right|^{2} \mathrm{~d} x \\
& +(2 / \gamma) \int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x
\end{aligned}
$$

We state a few geometric inequalities
(Takáč, IUMJ 2002, Lemma A.1, p. 233).
Let $1<p<\infty$ and $p \neq 2$. Assume that $\Theta \in L^{\infty}(0,1)$
satisfies $\Theta \geq 0$ in $(0,1)$ and $T=\int_{0}^{1} \Theta(s) \mathrm{d} s>0$.
Then there is a constant $c_{p} \equiv c_{p}(\Theta)>0$ such that, for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{N}$:
If $p>2$ then
(38)
$c_{p}(\Theta)^{p-2}\left(\max _{0 \leq s \leq 1}|\mathbf{a}+s \mathbf{b}|\right)^{p-2} \leq \int_{0}^{1}|\mathbf{a}+s \mathbf{b}|^{p-2} \Theta(s) \mathrm{d} s$
$\leq T \cdot\left(\max _{0 \leq s \leq 1}|\mathbf{a}+s \mathbf{b}|\right)^{p-2}$,
and if $1<p<2$ and $|\mathbf{a}|+|\mathbf{b}|>0$ then
(39)

$$
\begin{aligned}
& T \cdot\left(\max _{0 \leq s \leq 1}|\mathbf{a}+s \mathbf{b}|\right)^{p-2} \leq \int_{0}^{1}|\mathbf{a}+s \mathbf{b}|^{p-2} \Theta(s) \mathrm{d} s \\
& \leq c_{p}(\Theta)^{p-2}\left(\max _{0 \leq s \leq 1}|\mathbf{a}+s \mathbf{b}|\right)^{p-2}
\end{aligned}
$$

Equivalently, in both cases $(p \neq 2)$, the ratio

$$
\int_{0}^{1}|\mathbf{a}+s \mathbf{b}|^{p-2} \Theta(s) \mathrm{d} x /\left(\max _{0 \leq s \leq 1}|\mathbf{a}+s \mathbf{b}|\right)^{p-2}
$$

is bounded below and above by positive constants, whenever $|\mathbf{a}|+|\mathbf{b}|>0$.

Now we apply inequalities (38) and (39) to the expression $\tilde{a}(x ; h)$ (defined in (35)) in order to conclude that there exist constants $C_{1}^{\prime}, C_{2}^{\prime}>0$ such that
(40)

$$
\begin{aligned}
& \int_{\Omega} \widehat{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \leq \\
& C_{1}^{\prime} \int_{\mathcal{O}_{\delta}} \widehat{a}(x ; h)\left|\delta_{h} u\right|^{2} \mathrm{~d} x+C_{2}^{\prime} \int_{\Omega}\left|\delta_{h} f\right|\left|\delta_{h} u\right| \varphi_{\delta} \mathrm{d} x,
\end{aligned}
$$

where we have abbreviated
(41)
$\widehat{a}(x ; h) \stackrel{\text { def }}{=}\left(\max _{0 \leq s \leq 1}|(1-s) \nabla u(x+h)+s \nabla u(x)|\right)^{p-2}$.

Now we recall our hypothesis $\int_{\Omega}|\nabla f| \mathrm{d} x<\infty$ and the regularity result $|\nabla u| \leq$ const $<\infty$ in Ω, together with hypothesis (27) if $1<p<2$. Applying these inequalities to the right-hand side of (40), we arrive at

$$
\begin{equation*}
\int_{\Omega} \widehat{a}(x ; h)\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \leq C^{\prime}<\infty \tag{42}
\end{equation*}
$$

where the constant $C^{\prime}>0$ is independent from $h \in$ \mathbb{R}^{N} with $0<|h|<\delta$.

Finally, we deduce from (29) that the Jacobian matrix $\mathbf{B}=\left(B_{i j}\right)_{i, j=1}^{N}$ of the mapping $\eta \mapsto \mathbf{b}(\boldsymbol{\eta})=$
$|\boldsymbol{\eta}|^{(p / 2)-1} \boldsymbol{\eta}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ equals
(43)
$\mathbf{B}(\boldsymbol{\eta})=|\boldsymbol{\eta}|^{(p / 2)-1}\left(\mathbf{I}+\frac{p-2}{2} \frac{\boldsymbol{\eta} \otimes \boldsymbol{\eta}}{|\boldsymbol{\eta}|^{2}}\right), \quad \boldsymbol{\eta} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$.
In analogy with the Taylor formula in (33),
(44)

$$
\begin{aligned}
& \mathbf{b}(\nabla u(x+h))-\mathbf{b}(\nabla u(x)) \\
& =\widetilde{\mathbf{B}}(x ; h)(\nabla u(x+h)-\nabla u(x))
\end{aligned}
$$

with the abbreviation
$\widetilde{\mathbf{B}}(x ; h) \stackrel{\text { def }}{=} \int_{0}^{1} \mathbf{B}((1-s) \nabla u(x+h)+s \nabla u(x)) \mathrm{d} s \in \mathbb{R}^{N \times N}$.
Now we treat the L^{2}-norm

$$
\int_{\Omega}\left|\delta_{h}(\mathbf{b}(\nabla u))\right|^{2} \varphi_{\delta} \mathrm{d} x
$$

(45) $=\int_{\Omega}\left\langle\widetilde{\mathbf{B}}(x ; h) \delta_{h}(\nabla u), \widetilde{\mathbf{B}}(x ; h) \delta_{h}(\nabla u)\right\rangle \varphi_{\delta} \mathrm{d} x$

$$
=\int_{\Omega}\left\langle\tilde{\mathbf{B}}(x ; h)^{2} \delta_{h}(\nabla u), \delta_{h}(\nabla u)\right\rangle \varphi_{\delta} \mathrm{d} x
$$

where, using the abbreviation

$$
\boldsymbol{\eta}(s)=(1-s) \nabla u(x+h)+s \nabla u(x) \in \mathbb{R}^{N}, \quad 0 \leq s \leq 1
$$

we have
(46)

$$
\begin{aligned}
& \tilde{\mathbf{B}}(x ; h)^{2}=\int_{0}^{1} \int_{0}^{1} \mathbf{B}(\boldsymbol{\eta}(s)) \mathbf{B}(\boldsymbol{\eta}(t)) \mathrm{d} s \mathrm{~d} t= \\
& \int_{0}^{1} \int_{0}^{1}|\boldsymbol{\eta}(s)|^{(p / 2)-1}|\boldsymbol{\eta}(t)|^{(p / 2)-1} \mathbf{C}(\boldsymbol{\eta}(s), \boldsymbol{\eta}(t)) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

with the $(N \times N)$-matrix

$$
\mathbf{C}(\mathbf{a}, \mathbf{b})=\left(\mathbf{I}+\frac{p-2}{2} \frac{\mathbf{a} \otimes \mathbf{a}}{|\mathbf{a}|^{2}}\right)\left(\mathbf{I}+\frac{p-2}{2} \frac{\mathbf{b} \otimes \mathbf{b}}{|\mathbf{b}|^{2}}\right) \in \mathbb{R}^{N \times N}
$$

being uniformly bounded for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{N} \backslash\{0\}$, cf. (43). Furthermore, $\mathbf{C}(\mathbf{a}, \mathbf{b})=\mathbf{C}(\mathbf{a}) \mathbf{C}(\mathbf{b})$ where

$$
\mathbf{C}(\mathbf{a}) \stackrel{\text { def }}{=}\left(\mathbf{I}+\frac{p-2}{2} \frac{\mathbf{a} \otimes \mathbf{a}}{|\mathbf{a}|^{2}}\right) \in \mathbb{R}^{N \times N}
$$

is a symmetric matrix with the eigenvalues 1 and $p / 2$ (if $N \geq 2$). Consequently, there is a constant $\Gamma^{\prime}>0$ such that the kernel
$\mathbf{B}(\boldsymbol{\eta}(s)) \mathbf{B}(\boldsymbol{\eta}(t))$ of the quadratic form contained in the integrand on the right-hand side of eq. (45) satisfies

$$
\begin{aligned}
& \langle\mathbf{B}(\boldsymbol{\eta}(s)) \mathbf{B}(\boldsymbol{\eta}(t)) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle=\langle\mathbf{B}(\boldsymbol{\eta}(t)) \boldsymbol{\xi}, \mathbf{B}(\boldsymbol{\eta}(s)) \boldsymbol{\xi}\rangle \\
& \leq|\mathbf{B}(\boldsymbol{\eta}(t)) \boldsymbol{\xi}| \cdot|\mathbf{B}(\boldsymbol{\eta}(s)) \boldsymbol{\xi}| \\
& \leq|\mathbf{B}(\boldsymbol{\eta}(t))| \cdot|\mathbf{B}(\boldsymbol{\eta}(s))| \cdot|\boldsymbol{\xi}|^{2} \\
& \leq \Gamma^{\prime}|\boldsymbol{\eta}(t)|^{(p / 2)-1}|\boldsymbol{\eta}(s)|^{(p / 2)-1}|\boldsymbol{\xi}|^{2}
\end{aligned}
$$

for $\boldsymbol{\xi} \in \mathbb{R}^{N}$ and $s, t \in[0,1]$ with $\boldsymbol{\eta}(s), \boldsymbol{\eta}(t) \neq 0$. We first integrate this inequality with respect to $s, t \in$ $[0,1]$, then apply it to (46) to get
(47)

$$
\left\langle\tilde{\mathbf{B}}(x ; h)^{2} \boldsymbol{\xi}, \boldsymbol{\xi}\right\rangle \leq \Gamma^{\prime} \widetilde{b}(x ; h)^{2}|\boldsymbol{\xi}|^{2} \quad \text { for all } \boldsymbol{\xi} \in \mathbb{R}^{N}
$$

with the abbreviation

$$
\begin{aligned}
& \widetilde{b}(x ; h) \stackrel{\text { def }}{=} \int_{0}^{1}|\boldsymbol{\eta}(s)|^{(p / 2)-1} \mathrm{~d} s \\
& =\int_{0}^{1}|(1-s) \nabla u(x+h)+s \nabla u(x)|^{(p / 2)-1} \mathrm{~d} s
\end{aligned}
$$

in analogy with (35). This integral is estimated from above by inequalities (38) and (39),
(48)

$$
\widetilde{b}(x ; h) \leq C_{p} \widehat{b}(x ; h)
$$

where $C_{p}>0$ is a numerical constant depending only on $p(1<p<\infty)$ and
$\widehat{b}(x ; h) \stackrel{\text { def }}{=}\left(\max _{0 \leq s \leq 1}|(1-s) \nabla u(x+h)+s \nabla u(x)|\right)^{(p / 2)-1}$

We combine inequalities (47) and (48) and apply them to the quadratic form contained in the integrand on the right-hand side of eq. (45),
(49)

$$
\begin{aligned}
\int_{\Omega}\left|\delta_{h}(\mathbf{b}(\nabla u))\right|^{2} \varphi_{\delta} \mathrm{d} x & \leq \Gamma^{\prime} \int_{\Omega} \tilde{b}(x ; h)^{2}\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x \\
& \leq \Gamma^{\prime \prime} \int_{\Omega} \widehat{b}(x ; h)^{2}\left|\delta_{h}(\nabla u)\right|^{2} \varphi_{\delta} \mathrm{d} x
\end{aligned}
$$

with the constant $\Gamma^{\prime \prime}=\Gamma^{\prime} C_{p}^{2}>0$. As
$\widehat{a}(x ; h)=\widehat{b}(x ; h)^{2}$ by (41), ineq. (42) implies
(50)

$$
\int_{\Omega}\left|\delta_{h}(\mathrm{~b}(\nabla u))\right|^{2} \varphi_{\delta} \mathrm{d} x \leq C^{\prime \prime}<\infty
$$

where the constant $C^{\prime \prime}>0$ is independent from $h \in$ \mathbb{R}^{N} with $0<|h|<\delta$. We are now ready to derive all conclusions of our proposition from this estimate.

Proof of Proposition 1. (Pohozhaev's id.)

$$
\begin{aligned}
& \frac{N-p}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} f(x)(x \cdot \nabla u) \mathrm{d} x \\
& =\frac{1}{p} \int_{\partial \Omega}|\nabla u|^{p}(x \cdot \nu(x)) \mathrm{d} \sigma(x) \\
& -\int_{\partial \Omega}|\nabla u|^{p-2}(x \cdot \nabla u)(\nu(x) \cdot \nabla u) \mathrm{d} \sigma(x)
\end{aligned}
$$

We begin with the formal calculations

$$
\begin{aligned}
& \operatorname{div}\left((x \cdot \nabla u)|\nabla u|^{p-2} \nabla u\right) \\
& =(x \cdot \nabla u) \Delta_{p} u
\end{aligned}
$$

(51) $\quad+\nabla(x \cdot \nabla u) \cdot|\nabla u|^{p-2} \nabla u$
$=(x \cdot \nabla u) \Delta_{p} u+|\nabla u|^{p}+\frac{1}{p} x \cdot \nabla|\nabla u|^{p}$,
(52) $\quad \operatorname{div}\left(x|\nabla u|^{p}\right)=N|\nabla u|^{p}+x \cdot \nabla|\nabla u|^{p}$
which are valid pointwise in Ω if $u \in C^{2}(\Omega)$.
From eq. (51) we subtract (1/p)-multiple of eq. (52) and observe that the difference (53)
$\operatorname{div} \mathbf{v}(x)=\operatorname{div}\left((x \cdot \nabla u)|\nabla u|^{p-2} \nabla u\right)-\frac{1}{p} \operatorname{div}\left(x|\nabla u|^{p}\right)$
$=(x \cdot \nabla u) \Delta_{p} u+\left(1-\frac{N}{p}\right)|\nabla u|^{p}$
$=-f(x)(x \cdot \nabla u)-\frac{N-p}{p}|\nabla u|^{p}$
belongs to $L^{1}(\Omega)$, with the vector field

$$
\mathbf{v}(x) \stackrel{\text { def }}{=}(x \cdot \nabla u)|\nabla u|^{p-2} \nabla u-\frac{1}{p} x|\nabla u|^{p}
$$

being continuous in $\bar{\Omega}$, i.e., $\mathbf{v} \in[C(\bar{\Omega})]^{N}$. We complete the proof of Pohozhaev's identity by applying the divergence theorem to eq. (53).

