Must Elastic Materials be Hyperelastic?
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Abstract: Rivlin’s observation that elastic stress response that does not derive from a strain energy (Cauchy
elasticity) admits negative work in closed cycles of deformations is demonstrated for specific isotropic stress
responses and for a simple closed cycle of deformation. It is concluded that elastic materials must be hyper-
elastic.
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1. INTRODUCTION

In the finite strain theory of elasticity, the material response is typically modeled in one of
two ways. In the first model (called elasticity or Cauchy elasticity) the stress response is
assumed. In the second model (called hyperelasticity or Green elasticity) a strain energy is
assumed and the stress response is derived. These two formulations are equivalent if the
stress response function in the first model is assumed, at least tacitly, to be derivable from a
strain energy. Then the adoption of one approach or the other is a matter of taste or conve-
nience, although failure to make explicit the existence of a strain energy will lead to some
loss of simplification associated with, for example, the availability of the energy momentum
tensor or the inverse deformation theorem, or the lack of symmetry of the acoustic tensor.
The two approaches become significantly different, however, if the first theory is presented
as a physically viable theory that is broader than hyperelasticity, which it includes as a special
case. The different terminology suggests that there is such a difference and this is reflected
in the presentations of elasticity and hyperelasticity in textbooks and monographs.

During a discussion at the International Symposium on Second-order Effects at Haifa in
1962 [1], Rivlin pointed out that an elastic material that is not hyperelastic would allow for
non-zero work in closed cycles of deformation. This, in turn, would imply that the work done
in completing the cycle in the appropriate sense would be negative, since changing the sense
in which the cycle is traversed changes the sign of the work done. Negative work in a closed
cycle of deformation means that the energy released during unloading exceeds the work done
during loading, so that the material becomes a source of energy. Indeed, since the cycle may
be repeated indefinitely, the material is a source of unlimited energy. Truesdell dismissed
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Rivlin’s claim as a “silly shibboleth” but he did not refute it and a general agreement on
this obviously important issue has not been reached since then. Truesdell [2] identified
the problem of ensuring physically reasonable behavior as the “Hauptproblem” of elasti-
city.

The specialization of a thermodynamical theory of elasticity to a purely mechanical the-
ory (for either isothermal or isentropic response) leads to a strain energy function. Propo-
nents of this theory maintain that an elasticity theory without a strain energy is not phys-
ically reasonable for the reason stated above. Proponents of Cauchy elasticity argue that
the assumption of a strain energy is overly restrictive and prohibits a modeling of the be-
havior of inelastic materials under certain circumstances, although it is not clear what these
circumstances might be. Presumably, they do not include closed cycles of deformation.

In the present note, Rivlin’s idea is made concrete by choosing specific “non-hyperelas-
tic” stress response laws and by calculating the work done in a simple closed cycle of irrota-
tional biaxial homogeneous plane strain of a cube. The stress responses considered include a
simple extension of the classical Hooke’s law of isotropic linear elasticity to the finite strain
region by replacing the infinitesimal strain tensor by the logarithmic strain tensor, as well as
two non-hyperelastic perturbations of the general isotropic hyperelastic response. For each
case, it is shown that the work in the closed cycle is positive or negative depending on the
order in which the two stretches are applied and released, i.e., on whether the greater or the
lesser stretch is effected first.

It should be emphasized that these results merely demonstrate Rivlin’s statement for
specific materials and cycles. Indeed, Rivlin’s statement has not been challenged; it is its
implications that are questioned. Hopefully, these simple concrete examples will help toward
a resolution of this important question of the viability of Cauchy elasticity.

2. ISOTROPIC ELASTIC AND HYPERELASTIC RESPONSE
A deformation

x = x(X) (2.1
takes a typical particle from a place X in the undeformed configuration to a place x in the
deformed configuration. The deformation gradient tensor F = Grad x describes the local
deformation. Since the Jacobian det F measures the local change in volume, we have 0 <
det F < oo. Accordingly, F admits polar decompositions

F =RU = VR, (2.2)

where the rotation R is proper orthogonal and the stretch tensors U and V are symmetric and
positive-definite. The tensors F, R, U and V admit representations

F=veu; R=veu; U=lu®u; V=1vVQV. (2.3)

Downloaded from mms.sagepub.com by guest on October 21, 2016


http://mms.sagepub.com/

MUST ELASTIC MATERIALS BE HYPERELASTIC? 371

The right orthonormal triads (u', u?, u®) and (v', v?, v?) are the right and left principal di-
rections of stretch, the corresponding eigenvalues (4, 4,, 413) are the principal stretches, and
the repeated index in (2.3) is summed over the range i = 1, 2, 3.
For an isotropic elastic solid without internal constraint, the response law for the Piola
stress has the form
P = RO(U), (2.4)
with
©(QUQ") = Qe (U)Q" (2.5)
for all proper orthogonal tensors Q. Correspondingly, the Cauchy stress response is
T = RP(U)RT = ¥(V), (2.6)
with
¥ (U) = 1/det U®(U)U. 2.7)
The Piola and Cauchy stress tensors admit representations
P=pveu,; T=tVRV (2.8)
and the principal forces p; and principal stresses ¢; are related through
ti=pi/dide @ # ] F#kFID). (2.9)

It follows from (2.4), (2.5) and (2.8) that the dependence of the principal forces on the prin-
cipal stretches has the form

where the function p is symmetric in its second and third arguments.
The work done by the contact forces, per unit initial volume, in carrying the material
from a stretch state A: (11, A, 43) to a stretch state I': (y 1, y 2, y3) is a line integral

r
A

The strain energy W per unit volume (if there is one) may be written as a function of the
principal stretches

W =w(li, 42, 43) (2.12)
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that is fully symmetric in its arguments. Alternatively, the strain energy may be written as a
function of the principal invariants of U, or of U> = F'F, but such representations are not
useful for the present purpose. The principal forces and stresses are derivable from the strain
energy function as

It follows from (2.13); that the integrand in (2.11) is an exact differential, so that the work

T
W(A;r>=/ A =W 1720 73) = w(his Ay ) (2.14)
A

is path independent. In particular, the work done in taking the material through a closed
cycle of deformation is zero:

W(A;A) = /dw —0. (2.15)

It is evident from (2.13), that the condition on the principal force response law (2.10) to
ensure the existence of a strain energy function is

3. A SPECIFIC ELASTIC RESPONSE LAW
Consider the stress response law (2.4) with

®U) =2ulnU+ ptrinU)1 (x>0, p>0), (3.1)
where 1 is the unit tensor. This seems quite appealing; it extends the classical isotropic
stress-strain law of linear elasticity, with Lamé constants x and f, to the finite strain range
by replacing the infinitesimal strain tensor by the logarithmic strain tensor. The principal
forces are linear in the principal logarithmic strains

pi=2uei+ fer +e2+¢e3) (65 =1n4k). (3.2)

It is easy to verify that the Baker—Ericksen inequalities [3], which require that the ordering
of the principal stresses #; and principal stretches A; be the same,

([,' - l‘j)(ii — j,j) >0 for j’i §é j,j. (33)

are met in the tensile region 4; > 1.
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It is convenient to introduce the modulus &« = 2u + f. Then the principal forces are
pi=oalnl; + pIni;d, (i # j #k #i). (3.4)
It follows from (3.2) that

opi/0dj =B/l (A # ), (3.5

which does not pass the test (2.16), since f # 0. So, the material with stress response
described by (2.4) and (3.1) is elastic but it is not hyperelastic. It is evident that the problem
(if it is a problem?) is with the f-term in (3.5); the a-term derives from a strain energy

W = a{/llln/h + /12111/12 + 13111},3 - (/11 + /12 + 13 - 3)} (36)

4. A SPECIFIC CLOSED CYCLE OF DEFORMATION
Consider a homogeneous, irrotational plane strain in the tensile region, i.e.,
xi=0X1, x0=AhXy x=X; (L=>21 =1, (4.1)

where (X, X, X3) and (x;, x5, x3) are rectangular Cartesian coordinates. The corresponding
principal forces are (from (3.4))

P1= 0(11’1/11 + ﬁ]l’l/lz, P2 = 0(11’1/12 + ﬁln/ll, pP3 = ﬁ]l’l/llllz. (42)

Consider the following closed cycle of deformation of a unit cube of material:

. Stretchto 4; = a (> 1) holding /4, constant at 1, = 1 (ABCD to AEFD in Figure 1).
. Stretch to 1, = b (> 1) holding 4, constant at 4; = a (AEFD to AEGH).

. Relax to 4; = 1 holding /1, constant at 1, = b (AEGH to ABIH).

. Relax to 4, = 1 holding 4, constant at A; = 1 (ABIH to ABCD).

The path in the 4, 4,-plane is PQRSP in Figure 2.

Each phase of this deformation is effected by principal forces p; uniformly distributed
over the six faces of the cube and given by (4.2). The work done by these principal forces in
carrying out this deformation is

O R S R

W= / (01 + padia + padis). 43)

In accordance with (2.15), the a terms in (4.2) do not contribute, since they are derivable
from a strain energy. The principal force p; does no work since A3 = 1 throughout. Thus,
the total work is the “non-hyperelastic” contribution
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Figure 1.
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Figure 2.

W = ﬁ/(ll’l/lzd/l] =+ 111/11(1/12). (44)

There is no contribution during the first stretching phase PQ (4, = 1) or the second relaxation
phase SP (1; = 1). The work done along QRS is

W = B{(b — D)lna — (a — 1)Inb}, 4.5)

which is nonzero if a # b and is negative if a > b, i.e., if the greater stretch is effected
first.
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Of course, this problem is not peculiar to the stress response (3.4). As Rivlin [1] pointed
out, the problem is common to all elastic materials that are not hyperelastic. Non-zero work
in closed cycles of deformation implies negative work if the stretch path is described in the
appropriate sense and so all non-hyperelastic materials will manifest this in some closed
cycles. A non-hyperelastic perturbation of a general hyperelastic response

pi=0w/0A+ Pindid, (i #j#k#iQ), (4.6)

where w(1,, 4, A3) is any isotropic strain energy function, will again yield the work (4.5).
There is nothing special about this particular perturbation; The response law

pi=0w/0Ai+ B/Aii (i # JF#kF#i), 4.7
does not derive from a strain energy and gives the total work
W =p@a—->b)a—-1)b—-1)/ab, (4.8)

for this same cycle of deformation. This is negative if b > a, i.e., if the lesser stretch is
effected first.

5. DISCUSSION

It is probably not worthwhile to attempt to chronicle the ongoing debate over the validity
of Cauchy elasticity. Indeed, arguments on both sides of the issue (including the present
paper) have added little of substance to Rivlin’s initial assertion and Truesdell’s dismissive
response.

It is clear that the issue is not yet resolved. Modern texts and monographs on nonlin-
ear elasticity typically present Cauchy elasticity as a viable general theory and introduce
hyperelasticity (sometimes much later in the text) as a special case with some interesting
implications such as the symmetry of the acoustic tensor. The fact that the existence of a
strain energy is necessary to avoid negative work in closed cycles of deformation is rarely
addressed.

A recent paper by Batra [4], for instance, presents and examines four linear stress re-
sponse relations similar to (3.1) but with different measures of stress and strain. It is a simple
matter to write the corresponding principal force response relations and to see that two of
them meet the hyperelasticity condition (2.16) and the other two do not and so will exhibit
behavior similar to that described in Section 3. The point at issue here is that all four are
accorded equal status. Indeed, Batra says “Each of the four constitutive relations (1)—(4)...
is consistent with the principles of Continuum Mechanics” and then cites Truesdell and Noll
[5]. Unfortunately, he is quite correct, since these widely accepted principles do not require
that elastic materials should not release unlimited energy during multi-parameter cyclical
processes in which loads are applied and removed. Indeed, Truesdell and Noll [5, #92] state
that ““at present, on the basis of solutions of special problems, no straightforward test for the
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existence of a strain-energy is known”. The solution described in Section 3 surely suggests
such a test: Carry out the biaxial stretch test described, effecting the larger stretch first. If
the material releases energy in this process, it is not hyperelastic. If the material absorbs en-
ergy in the process, carry out the test again, effecting the smaller stretch first. If the material
releases energy in this process, it is not hyperelastic. Any sensible theory of elasticity should
certainly encompass loading and unloading response and should preclude such physically
unacceptable (albeit economically desirable!) energy release, so we conclude that elastic
materials must be hyperelastic.
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