Důležité substituce: převod na racionální funkce

Jsou-li P, Q polynomy $\mathbb{R} \to \mathbb{C}$, pak $R := \frac{P}{Q}$ nazýváme racionální funkci jedné reálné proměnné, platí $R(x) = \frac{P(x)}{Q(x)}$.

Obecněji, jsou-li P, Q polynomy dvou reálných proměnných, tj. $P, Q : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$, kde $P(x,y) = \sum_{0 \leq i+j \leq n} a_{ij} x^i y^j$ a $Q(x,y) = \sum_{0 \leq i+j \leq m} b_{ij} x^i y^j$, pak $R := \frac{P}{Q}$ nazýváme racionální funkci dvou reálných proměnných, platí $R(x,y) = \frac{P(x,y)}{Q(x,y)}$.

(I) $\int \mathbb{R}(e^{\alpha x})dx$

Substituce: $y = e^{\alpha x}$, $x \in \mathbb{R}$

Tvar derivace: $dx = \frac{1}{\alpha y} dy$

Výsledek: $\int R(y) \frac{1}{\alpha y} dy$

(II) $\int \frac{\mathbb{R}(\ln x)}{x} dx$

Substituce: $y = \ln x$, $x > 0$

Tvar derivace: $\frac{dy}{x} = dy$

Výsledek: $\int R(y) dy$

(III) $\int \mathbb{R} \left(x, \left(\frac{ax + b}{cx + d} \right)^{\frac{1}{2}} \right) dx$

Substituce: $t = \left(\frac{ax + b}{cx + d} \right)^{\frac{1}{2}}$

Podmínky: $ad - bc \neq 0$; $s = 2k \Rightarrow \frac{ax + b}{cx + d} > 0$, $s = 2k - 1 \Rightarrow x \neq -\frac{d}{c}$

Tvar derivace: $dx = \frac{ad - bc}{(ct^2 - a)t} dt$

Výsledek: $(ad - bc) \int \frac{R(t)}{(ct^2 - a)t} dt$

(IV) $\int \mathbb{R}(x, \sqrt{ax^2 + bx + c}) dx$

Eulerovy substituce

Čtyři netrivinální případy (někdy i dva na jednou).

1. $ax^2 + bx + c = a(x - x_1)(x - x_2)$, $x_1 < x_2$, $x_1, x_2 \in \mathbb{R}$

Substituce: $t = \left(\frac{x - x_2}{x_2 - x_1} \right)^{\frac{1}{2}}$ vede k (III)

2. $a > 0$

Substituce: $\sqrt{ax^2 + bx + c} = \sqrt{a} x \pm t \Rightarrow x = \left(t^2 - c \right) / (b \mp 2\sqrt{a}t)$

3. $c > 0$

Substituce: $\sqrt{ax^2 + bx + c} = \sqrt{c} \pm tx \Rightarrow x = \left(b \mp 2\sqrt{ct} \right) / (t^2 - a)$

4. $a \leq 0$ a $ax^2 + bx + c$ nemá v \mathbb{R} koreň ($\Rightarrow c \leq 0$): odmocnina není v \mathbb{R} pro žádné x definována.
(V) \[\int R(\cos x, \sin x)\,dx \] Goniometrické substituce

Substituce: \(y = \tan \frac{x}{2} \quad x \neq \pi + 2k\pi, k \in \mathbb{Z} \)

Inverze: \(x = 2 \arctan y \quad Tvar derivace: \quad dx = \frac{2}{1+y^2}\,dy \)

\[
\begin{align*}
\cos x &= \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 - y^2}{1 + y^2} \\
\sin x &= \frac{2\sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{2y}{1 + y^2}
\end{align*}
\]
Zjednodušení:

1. \(R(\cos x, -\sin x) = -R(\cos x, \sin x) \implies \text{Substituce: } y = \sin x \)
2. \(R(\cos x, \sin x) = -R(\cos x, \sin x) \implies \text{Substituce: } y = \cos x \)
3. \(R(-\cos x, -\sin x) = R(\cos x, \sin x) \implies \text{Substituce: } y = \tan x, x \neq \frac{\pi}{2} + k\pi \)

\[
\begin{align*}
\cos^2 x &= \frac{\cos^2 x}{\cos^2 x + \sin^2 x} = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2} \\
\sin^2 x &= \frac{\sin^2 x}{\cos^2 x + \sin^2 x} = \frac{\tan^2 x}{1 + \tan^2 x} = \frac{y^2}{1 + y^2} \\
\sin x \cos x &= \frac{\tan x}{1 + \tan^2 x} = \frac{y}{1 + y^2}
\end{align*}
\]

(VI) \[\int x^m(a + bx^n)^p\,dx, \quad m, n, p \in \mathbb{Q} \] Cebysjevy substituce

Umíme řešit pomocí elementárních funkcí pouze v následujících třech případech:

1. \(p \in \mathbb{Z} \). Pak položíme \(m = m'/\ell, n = n'/\ell \), kde \(m', n' \) a \(\ell \in \mathbb{Z}, \ell > 0 \).

Substituce: \(t = x^\frac{1}{\ell} \)

2. \((m+1)/n \in \mathbb{Z} \), \(p = k/s, k, s \in \mathbb{Z} \)

Substituce: \(t = (a + bx^n)^{\frac{1}{s}} \)

Inverze: \(x = (\frac{t^{s/a} - a}{b/a})^{\frac{1}{s}} \quad Tvar derivace: \quad dx = \frac{1}{n b^{1/n}} (t^s - a)^{\frac{1}{s} - 1} s t^{s-1} \,dt \).

Výsledek: \(\int x^m(a + bx^n)^p\,dx = \frac{1}{n b^{1/n} a^{s/a}} \int \frac{t^{s/a} - a}{b/a} t^k \left(\frac{t^s - a}{a^{s/a}}\right)^{\frac{1}{s} - 1} s t^{s-1} \,dt \)

\(= \frac{a s/a}{n b^{1/n}} \int t^{s+k-1} (t^s - a)^{\frac{n}{s} - 1} \,dt \)

3. \(\frac{m+1}{n} + p \in \mathbb{Z}, p = k/s, k, s \in \mathbb{Z} \)

Substituce: \(t = (ax^{-n} + b)^{\frac{1}{s}} \)

Inverze: \(x = \left(\frac{t^{s/a} - a}{b/a}\right)^{\frac{1}{s}} \quad Tvar derivace: \quad dx = \frac{a^{s/a}}{n b^{1/n}} (t^s - b)^{\frac{1}{s} - 1} s t^{s-1} \,dt \)

Výsledek: \(\int x^m(a + bx^n)^p\,dx = \int x^m x^{mp}(ax^{-n} + b)^{\frac{1}{s}} \,dx \)

\(= \int \left(\frac{a}{b/a}\right)^{\frac{1}{s}} t^k \left(\frac{a}{b/a}\right)^{p \frac{n}{s} - 1} b^{1/n} (t^s - b)^{\frac{1}{s} - 1} s t^{s-1} \,dt \)

\(= \frac{a^{s/a}}{n b^{1/n}} \int t^{k+s-1} (t^s - b)^{\frac{n}{s} + p - 1} \,dt \)