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Abstract

An important part of approximation theory is concerned with the approximation of a given function
f on some (compact) set Ω in the complex plane by polynomials. Classical results in this area deal
with the best approximation problem

min
p∈Pm

‖f − p‖Ω where ‖g‖Ω = max
z∈Ω

|g(z)|, (1)

and Pm is the set of polynomials of degree at most m.

Scalar approximation problems of the form (1) have been studied since the mid 1850s. Accordingly,
numerous results on existence and uniqueness of the solution as well as estimates for the value of
(1) are known. Here we consider a problem that at first sight looks similar, but apparently is much
less understood: Let f be a function that is analytic in a neighbourhood of the spectrum of a given
matrix A ∈ C

n×n, so that f(A) is well defined, and let ‖ · ‖ be a given matrix norm. Consider the
matrix approximation problem

min
p∈Pm

‖f(A)− p(A)‖. (2)

We ask two basic questions: Does this problem have a unique solution? Can we understand some
properties of polynomials that solve this kind of best approximation problems?

An answer to the first question depends of course on the norm used in (2). If the norm is known
to be strictly convex, as for example the Frobenius norm, then (2) is guaranteed to have a uniquely
defined solution as long as the value of (2) is positive. A useful matrix norm that is met in many
applications is the matrix 2-norm (spectral norm), which for a given matrix A is equal to the largest
singular value of A. This norm is not strictly convex, and thus the general result on uniqueness of
best approximation in linear spaces with a strictly convex norm does not apply. In this presentation
we will consider matrix approximation problems in the matrix 2-norm.

It is well known that when the function f is analytic in an open neighborhood of the spectrum of the
matrix A ∈ C

n×n, then f(A) is a well-defined complex n×n matrix. In fact, f(A) = pf (A), where
pf is a polynomial that depends on the values and possibly the derivatives of f on the spectrum
of A. Therefore, f in (2) can be thought to be a polynomial of degree, say, m + ℓ + 1 (m ≥ 0,
ℓ ≥ 0). Then, as we show in [4], the problem (2) can equivalently be written in the form

min
h∈Pm

‖Am+1g(A) − h(A)‖, (3)

where g is a given polynomial of degree at most ℓ. We can also consider a related problem

min
g∈Pℓ

‖Am+1g(A)− h(A)‖, (4)

where h is a given polynomial of degree at most m, and the best g ∈ Pℓ is sought.

Special cases of problems (3) and (4) have been considered by Greenbaum and Trefethen [2] in
the context of convergence of Krylov subspace methods for solving linear systems and eigenvalue
problems. In particular, they considered the approximation problems

min
h∈Pm

‖Am+1 − h(A)‖ and min
g∈Pℓ

‖Ag(A) − I‖, (5)
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the first one called the ideal Arnoldi approximation problem, and the second one called ideal GMRES
approximation problem. Greenbaum and Trefethen seem to be the first who studied existence and
uniqueness of polynomials that solve the problems (5). In particular, in [2] it is shown that if the
minima in (5) are nonzero, and if A is nonsingular in the case of ideal GMRES, then both problems
(5) have a unique minimizer. In the first part of this talk we present the results of our paper [4]
and generalize results of Greenbaum and Trefethen to problems of the form (3) and (4):

Provided that the minimum in (3) is nonzero, the problem (3) has a unique minimizer. Provided
that the minimum in (4) is nonzero and A is nonsingular, the problem (4) has a unique minimizer.

Note that the assumption of nonsingularity in the second case is in general necessary.

In a later paper, Toh and Trefethen [5] have called the polynomial that solves the problem

min
h∈Pm

‖Am+1 − h(A)‖ = min
p∈Mm+1

‖p(A)‖ ≡ ϕm+1(A) (6)

the (m + 1)st Chebyshev polynomial of A. Here Mm+1 denotes the class of monic polynomials
of degree m+ 1. The reason for this terminology is the following: When the matrix A is normal,
i.e. unitarily diagonalizable, problem (6) for the matrix 2-norm becomes a scalar approximation
problem of the form (1), with Ω being the set of eigenvalues of A, and the resulting monic polynomial
is the (m+1)st Chebyshev polynomial on the (discrete) set of eigenvalues of A. Apart from the work
of Greenbaum, Toh and Trefethen, and some further numerical examples in the recent book [3],
very little has been published on Chebyshev polynomials of matrices, let alone the more general
problem (2).

In second part of the talk we will present results of our recent paper [1] that studies general
properties of Chebyshev polynomials of matrices. In some cases, these properties turn out to be
generalizations of well known properties of Chebyshev polynomials of compact sets in the complex
plane. For example, it is well known that Chebyshev polynomials for compact sets are characterized
by alternation properties. A similar property can also be shown for Chebyshev polynomials of
block diagonal matrices: We show that the minimal norm ϕm+1(A) is attained on several blocks
simultaneously. We also present explicit formulas of the Chebyshev polynomials of certain classes
of matrices, including Jordan blocks, perturbed Jordan blocks and special classes of bidiagonal
matrices, and explore the relation between Chebyshev polynomials of these classes of matrices and
Chebyshev polynomials of sets in the complex plane.
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