
A new algorithm for computing quadrature-based bounds in CG

Gérard Meurant and Petr Tichý

Abstract

Today the (preconditioned) Conjugate Gradient (CG) algorithm by Hestenes and Stiefel is the
iterative method of choice for solving linear systems Ax = b with a real positive definite symmetric
matrix A. An important question is when to stop the iterations. Ideally, one would like to stop
the iterations when some norm of the error x− xk, where xk are the CG iterates, is small enough.
However, the error is unknown and most CG implementations rely on stopping criteria that use the
residual norm ‖rk‖ = ‖b−Axk‖ as a measure of convergence. These types of stopping criteria can
provide misleading information about the actual error. It can stop the iterations too early when
the norm of the error is still too large, or too late in which case too many floating point operations
have been done for obtaining the required accuracy. This motivated researchers to look for ways to
compute estimates of some norms of the error during CG iterations. The norm of the error which
is particularly interesting for CG is the A-norm which is minimized at each iteration,

‖x− xk‖A = ((x− xk)TA(x− xk))1/2.

Inspired by the connection of CG with the Gauss quadrature rule for a Riemann-Stieltjes integral,
a way of research on this topic was started by Gene Golub in the 1970s and continued throughout
the years with several collaborators (e.g., Dahlquist, Eisenstat, Fischer, Meurant, Strakoš). The
main idea of Golub and his collaborators was to obtain bounds for the integral using different
quadrature rules. It turns out that these bounds can be computed without the knowledge of the
stepwise constant measure and at almost no cost during the CG iterations.

These techniques were used by Golub and Meurant in 1994 for providing lower and upper bounds
on quadratic forms uT f(A)u where f is a smooth function, A is a symmetric matrix and u is a
given vector. Their algorithm GQL (Gauss Quadrature and Lanczos) was based on the Lanczos
algorithm and on computing functions of Jacobi matrices. Later in [1], these techniques were
adapted to CG to compute lower and upper bounds on the A-norm of the error for which the
function is f(λ) = λ−1. The idea was to use CG instead of the Lanczos algorithm, to compute
explicitly the entries of the corresponding Jacobi matrices and their modifications from the CG
coefficients, and then to use the same formulas as in GQL. The formulas were summarized in the
CGQL algorithm (QL standing again for Quadrature and Lanczos), whose most recent version is
described in the book [2].

The CGQL algorithm may seem complicated, particularly for computing bounds with the Gauss-
Radau or Gauss-Lobatto quadrature rules. In this presentation based on our paper [4], we intend to
show that the CGQL formulas can be considerably simplified. We use the fact that CG computes
the Cholesky decomposition of the Jacobi matrix which is given implicitly, and derive new algebraic
formulas by working with the LDLT factorizations of the Jacobi matrices and their modifications
instead of computing the Lanczos coefficients explicitly. In other words, one can obtain the bounds
from the CG coefficients without computing the Lanczos coefficients. The algebraic derivation of
the new formulas is more difficult than it was when using Jacobi matrices but, in the end, the
formulas are simpler. Obtaining simple formulas is a prerequisite for analyzing the behaviour of
the bounds in finite precision arithmetic and also for a better understanding of their dependence on
the auxiliary parameters µ and η which are lower and upper bounds (or estimates) of the smallest
and largest eigenvalues. We hope that these improvements will be useful for the implementation of
quadrature-based error bounds into existing and forthcoming CG codes.

1



We first focus on explanation of the main idea of quadrature-based estimates of the A-norm of the
error in CG. For simplicity, we will just concentrate on the Gauss and Gauss-Radau quadrature
rules. Using the ideas of [3] and [5], we end up with the formula

‖x− xk‖2A = Q̂k,d + R̂k+d ,

where R̂k+d stands for the remainder of the considered quadrature rule, Q̂k,d is computable, and
d > 0 is a chosen integer. The remainder is positive when using the Gauss quadrature rule, and
it is negative when using the Gauss-Radau quadrature rule with a prescribed node µ > 0 that is
strictly smaller than the smallest eigenvalue of A. Hence, Q̂k,d can provide a lower bound or an
upper bound on ‖x− xk‖2A.

The question is how to compute Q̂k,d efficiently. The algorithm CGQL computes Q̂k,d using the
entries of the corresponding Jacobi matrices and their rank-one or rank-two modifications. Our
new algorithm CGQ (Conjugate Gradients and Quadrature) and its preconditioned version compute
Q̂k,d directly from the CG coefficients. In particular, the lower bound based on the Gauss quadrature
rule can be computed using the sum

Q̂k,d =
k+d−1∑
j=k

∆j , ∆j ≡ γj‖rj‖2,

where γj are the CG coefficients, see also [5], and the upper bound based on the Gauss-Radau
quadrature rule can be computed using

Q̂k,d =

k+d−2∑
j=k

∆j + ∆
(µ)
k

where ∆
(µ)
k is updated using the new formula

∆
(µ)
k =

‖rk‖2
(

∆
(µ)
k−1 −∆k−1

)
µ
(

∆
(µ)
k−1 −∆k−1

)
+ ‖rk‖2

, ∆
(µ)
0 =

‖r0‖2

µ
.

In the final numerical experiment we will illustrate some of the difficulties that may arise with
modified quadrature rules when computing in finite precision arithmetic.

References

[1] G. H. Golub and G. Meurant, Matrices, moments and quadrature. II. How to compute the
norm of the error in iterative methods, BIT, 37 (1997), pp. 687–705.

[2] G. H. Golub and G. Meurant, Matrices, moments and quadrature with applications, Prince-
ton University Press, USA, 2010.

[3] G. H. Golub and Z. Strakoš, Estimates in quadratic formulas, Numer. Algorithms, 8 (1994),
pp. 241–268.

[4] G. Meurant and P. Tichý, On computing quadrature-based bounds for the A-norm of the
error in conjugate gradients, Numer. Algorithms, 62 (2013), pp. 163–191.

[5] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it
works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80.

2


