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Abstract

The A-norm of the error in the conjugate gradient (CG)
method can be estimated using quadrature-based bounds.
The formulas for computing these bounds are derived as-
suming exact arithmetic, using properties of orthogonal
polynomials. However, in finite precision arithmetic, or-
thogonality is lost, and convergence of CG is delayed.
Then, it is relevant to ask whether the formulas for com-
puting the bounds still approximate the A-norm of the ac-
tual error even though the computed approximate solution
is far away from its exact counterpart. This nontrivial phe-
nomenon was explained in [2]. In [4] we have shown that
the lower bound based on Gauss quadrature, and com-
puted in a convenient way, is numerically stable until the
A-norm of the error reaches its ultimate level of accuracy.
Recently, in [3], we improved the CGQL algorithm [1]
by Golub and Meurant for computing various kinds of
quadrature-based bounds. The new CGQ algorithm uses
simpler formulas than CGQL, and computes quadrature-
based bounds directly from the CG coefficients.
Our numerical experiments predict that some numerical dif-
ficulties may arise when computing upper bounds based
on modified quadrature rules like Gauss-Radau, no mat-
ter whether we use CGQL or CGQ. In this presentation we
investigate why these difficulties arise.

The Conjugate Gradient algorithm

The Conjugate Gradient (CG) algorithm is the iterative
method of choice for solving linear systems Ax = b with
a real positive definite symmetric matrix A. For simplicity
we assume that ‖b‖ = 1, x0 = 0.

input A, b
r0 = b, p0 = r0
for k = 1, 2, . . . do

γk−1 =
rTk−1rk−1
pTk−1Apk−1

xk = xk−1 + γk−1pk−1
rk = rk−1 − γk−1Apk−1

δk =
rTk rk

rTk−1rk−1
pk = rk + δkpk−1

end for
In exact arithmetic, the CG iterates xk minimize the A-norm
of the error over the kth Krylov subspace,

‖x− xk‖A = min
y∈Kk(A,b)

‖x− y‖A.

CG and Gauss Quadrature

The optimality of the CG method can be seen via Gauss
quadrature. At any iteration step k, CG (implicitly) deter-
mines weights and nodes of the k-point Gauss quadrature

∫ ξ

ζ
f (λ) dω(λ) =

k∑
i=1

ωi f ( θi) + Rk[f ] . (1)

In particular, for f (λ) ≡ λ−1, the remainder is positive,
and (1) can be written using γj and ‖rj‖2,

‖x‖2A =

k−1∑
j=0

γj‖rj‖2 + ‖x− xk‖2A .

Following the idea of [2], we can consider quadrature rules
at iterations k and k + d for some integer d > 0. Then, we
get the formula

‖x− xk‖2A =

k+d−1∑
j=k

γj‖rj‖2 + ‖x− xk+d‖2A .

By neglecting the error at iteration k + d we obtain a lower
bound for the A-norm of the error at iteration k. In [4] we
have shown that the above identity holds (up to some small
inaccuracy) also for numerically computed quantities, and it
can be used for estimating the A-norm of the actual error.

Gauss-Radau quadrature

To obtain an upper bound, one can modify the Gauss
quadrature rule. Consider the Gauss-Radau quadrature

∫ ξ

ζ
f (λ) dω(λ) =

 k∑
i=1

ω̃if
(
θ̃i

)
+ ω̃k+1f (µ)

 + R̃k[f ],

where the node µ, 0 < µ < λ1, is prescribed, and the un-
known nodes and weights are chosen to maximize the de-
gree of exactness. For f (λ) ≡ λ−1, the remainder is neg-
ative and the value of the Gauss-Radau quadrature can be
determined algebraically by computing the value

(
T̃−1k+1

)
1,1

,

T̃k+1 =


α1 β1
β1 . . . . . .

. . . . . . βk−1
βk−1 αk βk

βk α̃k+1

 ,
where α̃k+1 is determined such that µ is an eigenvalue of
T̃k+1, and αj and βj are the Lanczos coefficients that can
easily be computed from the CG coefficients. Considering
Gauss quadrature rule at iteration k and Gauss-Radau rule
at iteration k+d, we can use the same trick as for the Gauss
quadrature bound. In particular, for d = 1 we get

‖x− xk‖2A =

[(
T̃−1k+1

)
1,1
−
(
T−1k

)
1,1

]
+ R̃k[λ−1] . (2)

Neglecting the remainder that is negative, we get an upper
bound for the squared A-norm of the error. The bound can
be computed using CGQL or CGQ at a negligible cost.

The upper bound in finite precision arithmetic

We observed that in finite precision arithmetic, the upper
bound based on Gauss-Radau quadrature starts to differ
from the A-norm of the error in later iterations (it is delayed).

It was not clear whether the difference was caused by
rounding errors in the computation of the bound, or by

other phenomenon related to finite precision CG computa-
tions. Here λ1 is the smallest eigenvalue of A.
Experiment: We ran finite precision CG to generate the CG
coefficients, and used variable precision arithmetic (vpa) to
compute the upper bound.

The results show that the formulas used in CGQL and CGQ
produce in finite precision arithmetic the same upper bound
(up to some small inaccuracy) as the formulas that use vpa
arithmetic. In other words, even if we compute the bound
exactly, it would remain the same.

Observation

In later iterations, the eigenvalues of Tk+1 usually closely
approximate the eigenvalues of A. Because of finite preci-
sion arithmetic, several Ritz values can approximate a sin-
gle eigenvalue of A. We observed that when the gradient
of the characteristic polynomial of Tk+1 in λ1 is large, the
Gauss-Radau upper bound starts to differ from the A-norm
of the actual error. This situation is often related to conver-
gence of the second Ritz value to λ1.

The entry α̃k+1 of the modified matrix T̃k+1 need not be
close to αk+1. When the Gauss-Radau upper bound starts
to differ from the A-norm of the error, many of the eigenval-
ues of T̃k+1 are still clustered about the eigenvalues of A.
However, the number of eigenvalues of T̃k+1 in a cluster can
differ substantially from the number of eigenvalues of Tk+1
in the same cluster.

In summary, it seems that if the smallest eigenvalue of A is
closely approximated by several Ritz values, then prescrib-
ing the eigenvalue µ < λ1 of T̃k+1 changes the nature of the
problem, and the values(

T−1k+1

)
1,1

and
(
T̃−1k+1

)
1,1

start to differ significantly. As a consequence, convergence
of the Gauss-Radau upper bound is delayed.

Note that there is another problem related to the use of the
Gauss-Radau upper bound. In the previous we assumed
that a prescribed node µ < λ1 is given. However, in practical
computations, the parameter µ has to be determined. This
represents a nontrivial task. The node µ should be smaller
than λ1, and, simultaneously, very close to λ1, otherwise the
Gauss-Radau upper bound would be a poor approximation
of the A-norm of the error. One can approximate λ1 using
Ritz values during the CG computations. However, Ritz val-
ues provide only upper bounds on λ1, and some heuristics
has to be used to obtain µ < λ1 such that µ ≈ λ1. When us-
ing a heuristics, one can hardly obtain a guaranteed upper
bound for the A-norm of the error.
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