Characterization of half-radial matrices

Petr Tichý

joint work with

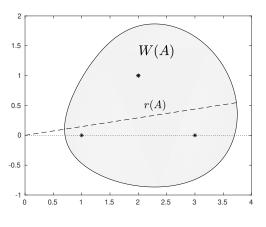
Iveta Hnětynková

Charles University, Prague

MAT TRIAD 2019 Liblice, Czech Republic

Field of values (numerical range)

and numerical radius of $A \in \mathbb{C}^{n \times n}$



$$W(A) \equiv \{z^*Az : z \in \mathbb{C}^n, ||z|| = 1\}$$
$$r(A) \equiv \max_{\zeta \in W(A)} |\zeta|$$

1

Numerical radius and the matrix 2-norm

It holds that

$$r(A) \leq ||A|| \leq 2 r(A),$$

- bounds attainable,
- $r(A) = ||A|| \longrightarrow \text{radial}$ matrices, well understood, several equivalent characterization [Horn, Johnson '94, Gustafson, Rao '97],
- $r(A) = \frac{1}{2}||A|| \longrightarrow \text{half-radial}$, sufficient conditions:
 - $\mathcal{R}(A) \perp \mathcal{R}(A^*)$,
 - ullet W(A) is a circular disk centered at origin with radius $\frac{1}{2}\|A\|$,
 - A has a 2D reducing subspace on which it is the shift.

[Gustafson, Rao '97, Hogben '13]

Characterization of half-radial matrices

using Θ_A set

Notation and assumptions

- Let $A \neq 0$ be square, $n \geq 2$. Denote $\langle Az, z \rangle \equiv z^*Az$.
- ullet Consider unit norm vectors u,v such that $Av=\|A\|u$.
- Maximum right and left singular subspaces:

$$\mathcal{V}_{max}(A) \equiv \{ v \in \mathbb{C}^n : ||Av|| = ||A|| ||v|| \},$$

 $\mathcal{U}_{max}(A)$ analogously.

ullet Any vector $z\in\mathbb{C}^n$ can be uniquely decomposed,

$$z = x + y,$$
 $x \in \mathcal{R}(A^*), y \in \mathcal{N}(A),$

 $\mathcal{R}(A^*)$... range of A^* , $\mathcal{N}(A)$... null space of A.

3

Θ_A set of maximizers definition

$$r(A) = \max_{\|z\|=1} |\langle Az, z \rangle|$$

Define

$$\Theta_A \equiv \{ z \in \mathbb{C}^n : ||z|| = 1, \ r(A) = |\langle Az, z \rangle|, \ \langle Ax, x \rangle = 0 \}.$$

where

$$z = x + y,$$
 $x \in \mathcal{R}(A^*), y \in \mathcal{N}(A).$

Theorem

[Hnětynková, T. '18]

$$||A|| = 2r(A) \iff \Theta_A \neq \{\emptyset\}$$

In particular, if $\mathcal{R}(A) \perp \mathcal{R}(A^*)$, then Θ_A is non-empty.

Maximum singular subspaces

and half-radial matrices

Assume without loss of generality that ||A|| = 1.

Theorem

[Hnětynková, T. '18]

$$\|A\| = 2r(A) \Longleftrightarrow \forall$$
 unit norm $v \in \mathcal{V}_{max}(A)$ it holds that

$$v \in \mathcal{N}(A^*), \qquad Av \in \mathcal{N}(A),$$

and

$$z=rac{1}{\sqrt{2}}\left(v+Av
ight) \quad ext{maximizes} \quad |\left\langle Az,z
ight
angle |.$$

- $v \in \mathcal{R}(A^*)$, $Av \in \mathcal{N}(A) \Rightarrow z \in \Theta_A$.
- $||A|| = 2r(A) \Rightarrow \mathcal{V}_{max}(A) \subseteq \mathcal{N}(A^*), \ \mathcal{U}_{max}(A) \subseteq \mathcal{N}(A).$

$$\mathcal{V}_{max}(A) \subseteq \mathcal{N}(A^*)$$
, $\mathcal{U}_{max}(A) \subseteq \mathcal{N}(A)$.

Consider A, ||A|| = 1, $\frac{1}{2} < \rho < 1$,

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \rho & 0 \\ 1 & 0 & 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \rho & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Obviously,

$$\mathcal{V}_{max}(A) = span\{e_1\} = \mathcal{N}(A^*),$$

$$\mathcal{U}_{max}(A) = span\{e_3\} = \mathcal{N}(A),$$

but A is not half-radial,

$$r(A) \ge |\langle Ae_2, e_2 \rangle| = \rho > \frac{1}{2}.$$

[Marie Kubínová]

Structure of Θ_A

From the previous (assuming ||A|| = 1)

$$\Theta_A \neq \{\emptyset\} \iff ||A|| = 2r(A) \Rightarrow z = \frac{1}{\sqrt{2}}(v + Av) \in \Theta_A,$$

where $v \in \mathcal{V}_{max}(A)$, ||v|| = 1.

Theorem

[Hnětynková, T. '18]

 Θ_A is either empty or

$$\Theta_A = \left\{ \frac{1}{\sqrt{2}} \left(e^{i\alpha} v + e^{i\beta} A v \right) : \ v \in \mathcal{V}_{max}(A), \ \|v\| = 1, \ \alpha, \beta \in \mathbb{R} \right\}.$$

7

Algebraic structure

of half-radial matrices

Algebraic structure of half-radial matrices

A generalization of result by [Gustafson, Rao '97]

Theorem

[Hnětynková, T. '18]

A is half-radial \iff A is unitarily similar to the matrix

$$(I_m \otimes J) \oplus B = \left| \begin{array}{ccc} J & & & \\ & \ddots & & \\ & & J & \\ & & B \end{array} \right|,$$

where $m = \dim \mathcal{V}_{max}(A)$,

$$J = ||A|| \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right],$$

and B is a matrix satisfying ||B|| < ||A||, $r(B) \le \frac{1}{2} ||A||$.

Half-radial matrices and Crouzeix's conjecture

Crouzeix's conjecture

"Where in the complex plane does a matrix live?" [Nick Trefethen]

Try to determine sets $\Omega \subset \mathbb{C}$ associated with A such that

$$|| p(A) || \sim || p ||_{\Omega} = \max_{\zeta \in \Omega} |p(\zeta)|.$$

" When eigenvalues do not tell the whole story, the field of values may give more info."

[Anne Greenbaum]

For any A and any polynomial p it holds that

$$|| p(A) || \le c || p ||_{W(A)},$$

- conjecture c=2 [Crouzeix '04],
- \bullet proof c=11.08 [Crouzeix '07],
- proof $c=1+\sqrt{2}$ [Crouzeix, Palencia '17].

Crouzeix's inequality

holds in some cases

$$|| p(A) || \le 2 || p ||_{W(A)}$$

- if A is normal (2 can be improved to 1),
- n=2 [Crouzeix '04],
- $p(\zeta) = \zeta^k$ [Berger, Pearcy '66],
- \bullet if W(A) is a disk [Badea '04, Okubo, Ando '75, von Neumann '51],

•

$$A = \left[\begin{array}{ccc} \lambda & \alpha_1 \\ & \ddots & \ddots \\ & & \ddots & \alpha_{n-1} \\ \alpha_n & & \lambda \end{array} \right].$$

[Choi, Greenbaum '12], [Choi '13]

Crouzeix's inequality

and half-radial matrices

$$|| p(A) || \le 2 || p ||_{W(A)}$$

Lemma

[Hnětynková, T. '18]

Half-radial matrices satisfy Crouzeix's inequality.

The bound is attained for $p(\zeta) = \zeta$.

Lemma

[Hnětynková, T. '18]

Let an integer $k \geq 1$ be given. It holds that

$$|| p(A) || = 2 || p ||_{W(A)}$$

for $p(\zeta) = \zeta^k \iff A^k$ is half-radial and $r(A^k) = r(A)^k$.

Crouzeix's conjecture

Greenbaum and Overton numerical results

Crouzeix ratio

$$f(p,A) = \frac{\|p\|_{W(A)}}{\|p(A)\|} \ge \frac{1}{2}$$
?

[Greenbaum, Overton '18]

- Optimization problem → properties,
- use **BFGS** method, Matlab and Chebfun,
- \bullet fix p or A or none,
- ullet conjecture: $\frac{1}{2}$ can be attained only for ζ^k ,
- conjecture: only for the Crabb-Choi-Crouzeix matrix.

Crabb-Choi-Crouzeix matrix

Independently used by [Choi '13], [Crouzeix '15], [Crabb '71],

$$C_1 = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \quad C_n = \begin{bmatrix} 0 & \sqrt{2} & & & \\ & 0 & 1 & & \\ & & 0 & \ddots & \\ & & & 0 & 1 \\ & & & & 0 & \sqrt{2} \\ & & & & & 0 \end{bmatrix}.$$

 C_n^n is half-radial and

$$||C_n^n|| = 2r(C_n^n), r(C_n^n) = r(C_n)^n.$$

Crabb's theorem

Theorem [Crabb '71]

Let A be a bounded linear operator on a Hilbert space H, and let $v \in H$, $\|v\| = 1$. Suppose that r(A) = 1 and that $\|A^k v\| = 2$ for some integer k. Then $A^{k+1}v = 0$, $\|A^i v\| = \sqrt{2}$, $i = 1, 2, \ldots, k-1$, the elements $v, Av, \ldots, A^k v$ are mutually orthogonal, and their linear span is a reducing subspace of A.

 \Rightarrow

Lemma

[Hnětynková, T. '18]

Let $A \in \mathbb{C}^{(n+1) \times (n+1)}$, r(A) = 1. It holds that

$$|| p(A) || = 2 || p ||_{W(A)}$$

for $p=\zeta^n\iff A$ is unitarily similar to C_n .

Exclusivity of the Crabb-Choi-Crouzeix matrix

Theorem

[Hnětynková, T. '18]

Let $A \in \mathbb{C}^{(n+1)\times (n+1)}$. It holds that

$$|| p(A) || = 2 || p ||_{W(A)}$$

for $p = \zeta^k$ and $1 \le k \le n \iff A$ is unitarily similar to

$$r(A) \left[\begin{array}{cc} C_k & \\ & B \end{array} \right],$$

where $r(B) \leq 1$ and $||B^k|| \leq 2$.

Conjectures [Greenbaum, Overton '18]:

- $\frac{1}{2}$ can be attained only for ζ^k ?
- only for the Crabb-Choi-Crouzeix matrix → yes.

Summary

$$||A|| \le 2r(A)$$

- A is half-radial $\iff \Theta_A \neq \{\emptyset\}$.
- **Structure** of the set Θ_A ,

$$\frac{1}{\sqrt{2}} \left(e^{i\alpha} v + e^{i\beta} A v \right)$$

where $v \in \mathcal{V}_{max}(A), v \in \mathcal{N}(A^*), Av \in \mathcal{N}(A)$.

- Algebraic characterization of half-radial matrices.
- If the upper bound in Crouzeix's inequality

$$|| p(A) || \le 2 || p ||_{W(A)}$$

can be attained **only for a monomial**, then our theorem **characterizes all matrices** for which the bound is attained.

References

- M. Crouzeix and C. Palencia, [The numerical range is a $(1+\sqrt{2})$ -spectral set, SIMAX 38 (2017), pp. 649–655]
- A. Greenbaum and M. L. Overton, [Numerical investigation of Crouzeix's conjecture, LAA 542 (2018), pp. 225–245]
- K. E. Gustafson, D. K. M. Rao, [Numerical range: The field of values of linear operators and matrices, Universitext, Springer-Verlag, New York, 1997]
- I. Hnětynková and P. Tichý, [Characterization of half-radial matrices, LAA 559 (2018), pp. 227–243]

Thank you for your attention!