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Abstract.

We study the convergence of GMRES [14] for linear algebraic systems with normal
matrices. In particular, we explore the standard bound based on a min-max approxi-
mation problem on the discrete set of the matrix eigenvalues. This bound is sharp, i.e.
it is attainable by the GMRES residual norm [4, 8]. The question is how to evaluate or
estimate the standard bound, and if it is possible to characterize the GMRES-related
quantities for which this bound is attained (worst-case GMRES). In this paper we
completely characterize the worst-case GMRES-related quantities in the next-to-last
iteration step and evaluate the standard bound in terms of explicit polynomials involv-
ing the matrix eigenvalues. For a general iteration step, we develop a computable lower
and upper bound on the standard bound. Our bounds allow to study the worst-case
GMRES residual norm in dependence of the eigenvalue distribution. For hermitian
matrices the lower bound is equal to the worst-case residual norm. In addition, numer-
ical experiments show that the lower bound is generally very tight, and support our
conjecture that it is to within a factor of 4/π of the actual worst-case residual norm.
Since the worst-case residual norm in each step is to within a factor of the square root
of the matrix size to what is considered an “average” residual norm, our results are of
relevance beyond the worst case.

Key words: GMRES, evaluation of convergence, ideal GMRES, normal matrices,
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1 Introduction

Convergence analysis of GMRES [14] has been an active area of research since
the algorithm’s introduction, and numerous papers have been devoted to this
subject, see e.g. [3, Chapter 3] and [10, Section 5.2] for surveys of results. When
the system matrix is normal, the earliest upper bound on the GMRES residual
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norms (henceforth called the “standard bound”) represents a certain min-max
approximation problem on the set of the matrix eigenvalues [14, Proposition 4].
Being independent of the initial residual, the standard bound is in fact a bound
on the “worst-case” GMRES residual norms for the given system matrix. For
normal matrices the standard bound has been shown to be sharp in the sense
that for each GMRES iteration step there exists an initial residual (depending
on the matrix and the iteration step) for which the bound is attained [4, 8]. In
addition, for normal matrices the worst-case GMRES and the “average” GMRES
behavior agree to within a factor of n1/2 (n = matrix size). By average behavior
we here mean that GMRES is started with an initial residual having components
in the matrix eigenvectors of approximately equal size (see Section 5 for details).

The sharpness of the standard bound and its closeness to the average case
sometimes lead to the impression that the GMRES convergence behavior for
normal matrices is fully understood. However, two major problems still remain
open. First, the solution of the min-max approximation is unknown (except for
special cases), and its known estimates based on only a few properties of the
matrix (such as the condition number) are often misleading. Second, in many
practical applications the initial residual is not “average”, and a systematic study
of the consequences for the GMRES convergence needs yet to be performed.

This paper is devoted to the first of the two problems, as its solution appears
to be a prerequisite for studying the second. To this end it is of great interest
to characterize the min-max approximation problem in terms of easily compre-
hensible expressions involving the matrix eigenvalues as well as to determine the
initial residuals for which the standard bound is attained. Several results in this
direction have been previously obtained in the literature. For (real) symmetric
positive definite matrices, the initial residuals leading to the worst-case residual
norm are completely characterized in [2, Section 2]. The analysis in [2] is based
on classical results of approximation theory. In particular, in case of a symmetric
positive definite matrix, the polynomial that solves the approximation problem
on the matrix eigenvalues (i.e. the one for which the standard bound is attained)
is the well-known min-max polynomial on a discrete set of real points (here the
matrix eigenvalues). The result of [2] is derived in the context of the conjugate
gradient method and can be applied in the GMRES context and to all com-
plex hermitian matrices. A special case of this result (which in particular also
assumes that the eigenvalues are real) is proved in [17] by solving a constraint
optimization problem using Lagrange multipliers. The related paper [18] gives
necessary and sufficient conditions on the eigenvalues of normal matrices so that
there exists an initial residual for which GMRES stagnates throughout the itera-
tion (called “complete stagnation” of GMRES). For any normal matrix satisfying
these conditions the authors give formulas based on the matrix eigenvalues for
all initial residuals that lead to complete stagnation [18, Theorem 3.1]. The
complete stagnation obviously represents a special case of worst-case GMRES
convergence behavior.

General bounds on the GMRES residual norms for normal matrices that de-
pend on the matrix eigenvalues and the initial residual are derived in [7]. The
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main tool in this analysis is a factorization of the Krylov matrix. Using a sim-
ilar starting point as in [7] we characterize the quantities in the next-to-last
GMRES iteration step for normal matrices ((n− 1)st step in case of an n by n
matrix having n distinct eigenvalues) in terms of the initial residual and explicit
polynomials involving the matrix eigenvalues. We give numerical illustrations of
our analytic formulas that show how GMRES behaves for different eigenvalue
distributions. Based on these results we completely characterize the worst-case
GMRES quantities in the next-to-last iteration step. Then we analyze the worst-
case GMRES residual norm in a general iteration step and develop a lower bound
on this quantity. In case of hermitian matrices our results are the same as in [2,
Section 2], but with a different proof. For the general (normal) case our results
complement the existing literature. We prove that our lower bound is to within
a factor of (at most) the order n to the actual worst-case residual norm. Fur-
thermore, we conjecture that this bound is much more tight (namely to within
a constant factor), and give supporting numerical evidence.

The paper is organized as follows. In Section 2 we develop the basic tools
needed for our general analysis in Section 3. Numerical examples studying the
closeness of the lower bound to the standard bound are given in Section 4, and
a concluding discussion in Section 5 closes the paper.

Throughout the paper we assume exact arithmetic.

2 Basic concepts

In this section we define and develop the basic tools needed for our analysis.
Let a linear system

(2.1) Ax = b ,

with a nonsingular and normal matrix A ∈ Cn×n and b ∈ Cn be given. Fur-
thermore, let A = QΛQH be the eigendecomposition of A, where QHQ = I,
Λ = diag(λ1, . . . , λn), and let L = {λ1, . . . , λn} denote the set of all eigenvalues
of A. To avoid unnecessary technical complications we will assume throughout
this paper that all eigenvalues of A are distinct.

Suppose that we solve (2.1) with GMRES [14]. Starting from an initial guess
x0, this method computes the initial residual r0 = b − Ax0 and a sequence of
iterates x1, x2, . . . , so that the ith residual ri ≡ b−Axi satisfies

(2.2) ‖ri‖ = ‖pi(A) r0‖ = min
p∈πi

‖p(A) r0‖ ,

where πi denotes the set of polynomials of degree at most i and with value one
at the origin, and ‖ · ‖ denotes the 2-norm. We parameterize the initial residual
r0 by

(2.3) r0 = Q [%1, . . . , %n]T ,

so that

(2.4) ri = pi(A) r0 = Q [pi(λ1)%1, . . . , pi(λn)%n]T ,
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and (2.2) can be written in the form

(2.5) ‖ri‖ = min
p∈πi




n∑

j=1

|p(λj) %j |2



1/2

.

It is well-known that for each GMRES iteration step i and each initial residual
r0 with at least i + 1 nonzero coordinates %j , there exists a unique polynomial
pi ∈ πi that solves (2.5). This pi(λ) is called the ith GMRES polynomial.

Similar to [7, 17, 18], we start with a factorization of the Krylov matrix,

(2.6) Ki+1 ≡ [r0, Ar0, . . . , A
ir0]

for some i, 0 ≤ i ≤ n− 1. We denote D ≡ diag(%1, . . . , %n), and

(2.7) Vi+1 ≡




1 λ1 · · · λi
1

...
...

...
1 λn · · · λi

n


 .

Then Ki+1 = QDVi+1, and the Moore-Penrose generalized inverse of Ki+1 is
given by K+

i+1 = (DVi+1)+QH . If rank(D) ≥ i + 1, then Ki+1 has full column
rank, and GMRES does not terminate before the step i + 1. In this case, as
shown in [7, Theorem 2.1], see also [11, Theorem 2.1], the ith GMRES residual
satisfies

ri = ‖ri‖2 (K+
i+1)

H e1

= ‖ri‖2 Q
[
(DVi+1)+

]H
e1 ,(2.8)

where e1 = [1, 0, . . . , 0]T . Comparing (2.4) and (2.8) shows that

(2.9) pi(λj) %j = ‖ri‖2
[
(DVi+1)+

]H

j1
, j = 1, . . . , n ,

where [(DVi+1)+]Hj1 denotes the jth entry in the first column of [(DVi+1)+]H .
Note that (2.9) gives the complete correspondence between the ith GMRES poly-
nomial, the ith GMRES residual norm, the coordinates of r0 in the eigenvectors
of A, and the eigenvalues of A. To understand fully the behavior of GMRES for
normal matrices it would be desirable to have a general formula for the entries
in the first column of [(DVi+1)+]H . However, such a formula is for a general
value of i unknown. In the following subsection we will study the special case
i = n− 1, in which (2.8)–(2.9) can be significantly simplified.

2.1 The (n− 1)st GMRES step

Without loss of generality we restrict our analysis in this subsection to vectors
r0 with nonzero coordinates %j , j = 1, . . . , n. In case d ≥ 1 coordinates %j are
zero, the corresponding eigencomponents do not play any role for GMRES, and
hence the formulas for i = n− 1 derived below will hold for i = n− d− 1. Since
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%j 6= 0 for all j, GMRES terminates, i.e. computes the solution x, exactly in
step n, and its residual norms satisfy

(2.10) ‖r0‖ ≥ ‖r1‖ ≥ . . . ≥ ‖rn−1‖ > ‖rn‖ = 0 .

In the step i = n− 1, the Vandermonde matrix Vn is square and invertible (all
eigenvalues are distinct). Then [(DVn)+]H = D−HV −H

n , and (2.8) is equivalent
to

(2.11) rn−1 = ‖rn−1‖2 QD−HV −H
n e1 .

Formulas for the entries of an inverse Vandermonde matrix are well known, see
e.g. [6, Chapter 21.1.]. In general, the jth entry in the mth column of the matrix
V −T

n is the coefficient of the jth Lagrange polynomial,

(2.12) lj(λ) ≡
n∏

k=1
k 6=j

λk − λ

λk − λj
,

corresponding to λm−1, m = 1, . . . , n. Hence the first column of V −H
n is given

by the complex conjugates of the constant terms of the lj(λ), i.e.

(2.13) V −H
n e1 = [l1(0), . . . , ln(0)]H =




n∏
k=1
k 6=1

λk

λk − λ1
, . . . ,

n∏
k=1
k 6=n

λk

λk − λn




H

.

The following theorem explains how the (n−1)st GMRES residual and iteration
polynomial depend on the eigenvalue distribution of A (represented by the values
lj(0)) and how on the initial residual r0 (represented by the coordinates %j).

Theorem 2.1. Suppose that GMRES is applied to the system (2.1) with the
normal matrix A ∈ Cn×n having n distinct eigenvalues, and that r0 is param-
eterized by (2.3) with %j 6= 0 for all j. Then the norm of (n − 1)st GMRES
residual rn−1 satisfies

(2.14) ‖rn−1‖ =




n∑

j=1

∣∣∣∣
lj(0)
%j

∣∣∣∣
2


−1/2

,

and the (n− 1)st GMRES polynomial pn−1(λ) has the form

(2.15) pn−1(λ) = ‖rn−1‖2
n∑

j=1

lj(0)
|%j |2 lj(λ).

Proof. Inserting (2.13) into (2.11) yields

(2.16) rn−1 = ‖rn−1‖2 Q
[
l1(0)%−1

1 , . . . , ln(0)%−1
n

]H
,
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from which (2.14) follows immediately by taking norms. Next, using the property
lj(λk) = δjk, the polynomial pn−1(λ) can be written as a linear combination of
the Lagrange polynomials,

(2.17) pn−1(λ) =
n∑

j=1

pn−1(λj) lj(λ) .

Equating (2.4) for i = n− 1 with (2.16) shows that

(2.18) pn−1(λj) = ‖rn−1‖2 lj(0)
|%j |2 , j = 1, . . . , n ,

which, inserted into (2.17), shows (2.15).

Theorem 2.1 gives formulas for the (n−1)st GMRES residual and polynomial
in terms of the eigenvalues of A and the coordinates of r0 in the eigenvectors
of A. The influences of both quantities are well separated in (2.14) and (2.15),
so that these formulas answer all questions about the (n− 1)st step of GMRES
applied to normal matrices.

Note that the relation (2.14) implies the upper bound

(2.19) ‖rn−1‖ ≤ min
1≤j≤n

∣∣∣∣
%j

lj(0)

∣∣∣∣ .

The same upper bound follows from [7, Theorem 4.1] with i = n− 1.

Example 2.1. For numerical illustration we compute the values |lj(0)| for
four different real eigenvalue distributions. Each dot in Figure 2.1 represents a
data point (λj , |lj(0)|).

For the top left figure we use uniformly distributed eigenvalues in the inter-
val [1/20, 1], i.e. λj = j/20, for j = 1, . . . , 20. We see that |l10(0)| ≈ 105 is
the largest of the values |lj(0)|. Then (2.19) implies that for any normal matrix
having such eigenvalues, the GMRES residual norm in the next-to-last step will
be of order 10−5 or smaller (note that 0 < |%j | < 1 by assumption).

For the top right figure we use the eigenvalues of the 20 by 20 prolate matrix
generated by the MATLAB command A=gallery(’prolate’,20). Prolate ma-
trices arise in signal processing. They are symmetric, extremely ill conditioned
(here: λ1 ≈ 1.76 ∗ 10−14, λ20 = 1 − λ1, condition number ≈ 5.69 ∗ 1013), and
their eigenvalues form two clusters that are symmetric about a certain point
(here: symmetric about 0.5); see [16] for more information. In our example the
cluster close to zero causes severe trouble for GMRES. None of the values |lj(0)|
is larger than one, which typically (i.e., unless a very peculiar distribution of
the coefficients %j is constructed) will lead to almost complete stagnation until
the very last step, cf. (2.14). This represents a counterexample for the frequent
assertion that in case of k (here: k = 2) eigenvalue clusters GMRES will essen-
tially need only k steps for a significant reduction of the residual norm. In fact,
the location of the clusters relative to the origin and relative to each other is
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Figure 2.1: The values |lj(0)| for example eigenvalue distributions.

of great importance for the GMRES performance. This is also demonstrated in
the two further examples.

The bottom left and bottom right figures show the values |lj(0)| for the eigen-
value distributions

λ(0)
j = j2/400 , j = 1, . . . , 20 , and

λ(1)
j = log(j)/ log(20) , j = 2, . . . , 20 , λ(1)

1 = 1/400 ,

having clusters close to zero and one, respectively. Each normal matrix having
either the λ(0)

j or the λ(1)
j as its eigenvalues has the (moderate) condition number

400. Nevertheless, the GMRES residual norms in the next-to-last step for the
two eigenvalue sets may differ by several orders of magnitude. While the value
of (2.14) for the eigenvalues λ(0)

j is typically close to one, it is typically of order
10−10 for the eigenvalues λ(1)

j . This is a numerical illustration why the conver-
gence bounds for GMRES and other Krylov subspace methods such as CG and
MINRES that are based on the condition number only (see [3, Chapter 3.1] for
an overview), can provide misleading information about the actual convergence
behavior.
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3 Worst-case residual norm

In this section we study the worst-case GMRES residual norms for normal
matrices. By “worst-case” we mean, for a given matrix A, the maximally at-
tainable GMRES residual norm in every iteration step i. To make our notion
precise we introduce the following definition.

Definition 3.1. An ith worst-case GMRES residual rw
i for A ∈ Cn×n is a

GMRES residual that satisfies

(3.1) ‖rw

i ‖ = max
‖r0‖=1

min
p∈πi

‖p(A) r0‖ , i = 1, . . . , n− 1.

A few remarks concerning our definition are in place. First, the restriction
that ‖r0‖ = 1 in (3.1) is made for convenience only. If we would drop this
restriction, then the right hand side of (3.1) and all subsequent formulas based
on (3.1) must be multiplied by ‖r0‖.

Second, as indicated by the wording of the definition, worst-case residuals are
not unique. For example, when ri

0 yields a certain ith worst-case residual rw
i

for a given matrix A, then for all |α| = 1, α ri
0 yields, for the same A, the ith

GMRES residual α rw
i . Obviously, ‖rw

i ‖ = ‖α rw
i ‖, so that all vectors α rw

i are
ith worst-case residuals for A.

Third, for each normal matrix A ∈ Cn×n (with n distinct eigenvalues) and each
GMRES iteration step i = 1, . . . , n − 1, there exists an ith worst-case residual
rw
i . The reasoning goes as follows. Assuming that ‖r0‖ = 1, the standard

upper bound on the GMRES residual norms [14, Proposition 4] follows easily
from (2.2),

(3.2) ‖ri‖ ≤ min
p∈πi

‖p(A)‖ = min
p∈πi

max
λj∈L

|p(λj)|.

The quantity minp∈πi ‖p(A)‖ (called the “ideal GMRES” approximation [5]) is
independent of r0 and thus represents an upper bound on the worst-case GMRES
residual norm for the matrix A in step i. As shown independently in [4] and [8],
for each normal matrix A and each step i, there exists an initial residual ri

0 so
that equality holds in (3.2). Clearly, the ith GMRES residual corresponding to
ri
0 is an ith worst-case GMRES residual for A in the sense of Definition 3.1.
Fourth, except for special cases, there exists no single initial residual that

leads to a worst-case GMRES residual norm ‖rw
i ‖ in every step i. Typically

the convergence curve produced by the norms ‖rw
i ‖ is an artifact, and does not

correspond to an actual GMRES run with a given matrix and initial residual.
Fifth, since we assume that all eigenvalues are distinct, it holds ‖rw

i ‖ > 0 for
i = 0, . . . , n − 1. Therefore, the initial residual ri

0 corresponding to rw
i has at

least i + 1 nonzero coordinates in the eigenvector basis.

For each subset S of the eigenvalues of A, S ⊆ L, we denote

(3.3) MS

i ≡ min
p∈πi

max
λj∈S

|p(λj)|.
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The result of [4, 8], which will play an important role in our further development,
can in this notation be phrased as follows: For each normal matrix A ∈ Cn×n

(with n distinct eigenvalues) and each i = 1, . . . , n− 1, there exists a worst-case
GMRES residual rw

i with

(3.4) ‖rw

i ‖ = ML

i .

As outlined in the Introduction it is of great interest to find explicit formulas
for the polynomials that achieve the min-max value ML

i , and to identify the
properties of the initial residuals ri

0 that yield a worst-case GMRES residual in
step i. In the following we will address these questions. We will first consider
the iteration step i = n− 1, and then the case of a general iteration step i.

3.1 Worst case in step n− 1

The following result completely characterizes the worst-case GMRES in the
next-to-last iteration step.

Theorem 3.1. For a given normal matrix A ∈ Cn×n with n distinct eigen-
values the unit norm initial residual rn−1

0 yields an (n− 1)st worst-case GMRES
residual if and only if the coordinates of rn−1

0 in the eigenvectors of A satisfy

(3.5) |%n−1
j |2 =

|lj(0)|
n∑

k=1

|lk(0)|
, j = 1, . . . , n .

The norm of the (n− 1)st worst-case GMRES residual rw
n−1 is given by

(3.6) ‖rw

n−1‖ =

(
n∑

k=1

|lk(0)|
)−1

,

and the corresponding worst-case GMRES polynomial pw
n−1(λ) has the form

(3.7) pw

n−1(λ) = ‖rw

n−1‖
n∑

j=1

lj(0)
|lj(0)| lj(λ) .

Moreover,

(3.8) |pw

n−1(λj)| = ‖rw

n−1‖ = ML

n−1 , j = 1, . . . , n ,

where L denotes the set of eigenvalues of A.

Proof. To find an (n − 1)st worst-case GMRES residual we need to maxi-
mize the GMRES residual norm given by (2.14) under the constraint that the
initial residual has unit norm. This is equivalent to solving the following con-
straint minimization problem for the coordinates of the initial residual in the
eigenvectors of A,

min
%n−1
1 6= 0,...,%n−1

n 6= 0

n∑

j=1

|lj(0)|2
|%n−1

j |2 , where
n∑

j=1

|%n−1
j |2 = 1 .



10 JÖRG LIESEN AND PETR TICHÝ

According to Cauchy’s inequality,

n∑

j=1

∣∣∣∣∣
lj(0)
%n−1

j

∣∣∣∣∣

2

=
n∑

j=1

∣∣∣∣∣
lj(0)
%n−1

j

∣∣∣∣∣

2 n∑

j=1

|%n−1
j |2 ≥




n∑

j=1

|lj(0)|



2

,

with equality if and only if

ξ

∣∣∣∣∣
lj(0)
%n−1

j

∣∣∣∣∣ = |%n−1
j | ⇔ ξ |lj(0)| = |%n−1

j |2 ,

for all j = 1, . . . , n and some real ξ. The number ξ is determined from

ξ

n∑

k=1

|lk(0)| =
n∑

k=1

|%n−1
k |2 = 1 ⇒ ξ =

(
n∑

k=1

|lk(0)|
)−1

.

Hence |%n−1
j |2 satisfies (3.5) and the norm of the corresponding worst-case resid-

ual is given by (3.6).
Next, if we substitute |%n−1

j |2 in the form (3.5) into (2.15) and use the fact
that |%n−1

j |2 = |lj(0)| ‖rw
n−1‖, then we obtain the worst-case polynomial (3.7).

Finally, since lj(λk) = δjk, the worst-case polynomial has at every eigenvalue
the same absolute value as shown in the first equality in (3.8), and the second
equality in (3.8) follows from (3.4) with i = n− 1.

Remark 3.1. Note that the theorem gives, besides the GMRES context, the
explicit solution for a general polynomial approximation problem in the complex
plane. In particular, (3.6) can be derived with some effort from the results of
[13, Section 3]. It can be shown that (3.6) is equivalent to

ML

i =
|det Vn|

n∑
j=1

| detV (j)
n |

,

where V (j)
n denotes the (n − 1)-by-(n − 1) matrix resulting from deletion of the

first column and jth row of Vn. In our notation, this corresponds to the formula
given in [13, Remark 3, p. 692]. However, we are unaware that (3.5) or (3.7)
have been found before.

Remark 3.2. We point out that the (n− 1)st worst-case GMRES polynomial
pw

n−1(λ) as given in (3.7) is uniquely determined, since it depends only on the
uniquely determined quantities ‖rw

n−1‖ and lj(λ), j = 1, . . . , n. In particular,
pw

n−1(λ) is independent of the choice of the coordinates (3.5), so that all initial
residuals with coordinates (3.5) lead to the same (n − 1)st worst-case GMRES
polynomial.

Theorem 3.1 generalizes the results of [2, Section 2] (for i = n − 1) from
hermitian to all normal matrices. In addition, the theorem allows to give new
proofs for a number of known results. We present two examples:
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1. Complete stagnation of GMRES. The question we ask is whether for a
given normal matrix A there exists a unit norm vector rn−1

0 such that
GMRES completely stagnates, i.e.

1 = ‖rn−1
0 ‖ = ‖rw

n−1‖ .

Using Theorem 3.1 and the uniqueness of the (n − 1)st worst-case GM-
RES polynomial it is easy to see that in case of complete stagnation this
polynomial is given by pw

n−1(λ) ≡ 1. Then (3.7) implies

pw

n−1(λj) =
lj(0)
|lj(0)| = 1 , j = 1, . . . , n.

In other words, complete stagnation can occur only if all lj(0), j = 1, . . . , n,
are real and positive. Using other means this result was previously derived
in [18, Theorem 3.1].

2. Ideal GMRES approximation. The proofs of (3.4) in [4, 8] are based on
intricate constructions. For the special case i = n−1 we now give a simple
proof of (3.4), i.e. that

max
‖r0‖=1

min
p∈πi

‖p(A)r0‖ = min
p∈πi

‖p(A)‖

holds for all normal matrices A. As in (3.6) and (3.7), let rw
n−1 and pw

n−1(λ)
denote an (n − 1)st worst-case GMRES residual and polynomial for A,
respectively. Then

min
p∈πn−1

‖p(A)‖ = min
p∈πn−1

max
λj∈L

|p(λj)|
≤ max

λj∈L
|pw

n−1(λj)|
= ‖rw

n−1‖
= max

‖r0‖=1
min

p∈πn−1
‖p(A)r0‖

≤ min
p∈πn−1

‖p(A)‖ ,

so that equality must hold throughout. Note that for the last inequality
we have used the standard bound (3.2).

3.2 Worst case in a general step i

We next attempt to characterize the worst-case GMRES in a general iteration
step i < n− 1. To this end we derive a lower bound on the min-max value

ML

i = min
p∈πi

max
λj∈L

|p(λj)| .

We use the simple fact that

(3.9) ML

i ≥ MS

i
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holds for any set S ⊆ L. For any set S ⊆ L containing i + 1 distinct elements
there exists a normal (i + 1)-by-(i + 1) matrix with the spectrum S. To this
matrix we can apply Theorem 3.1 which completely characterizes the worst-case
GMRES in step i, and in particular shows that

(3.10) MS

i =

(
i+1∑

k=1

|lS

k(0)|
)−1

,

where lS

k(λ), k = 1, . . . , i+1, denotes the kth Lagrange polynomial corresponding
to the elements in the set S. Using (3.9) and (3.10) it is easy to see that for the
given matrix A with the spectrum L,

(3.11) ML

i ≥ max
S⊆L

|S|=i+1

MS

i = max
S⊆L

|S|=i+1

(
i+1∑

k=1

|lS

k(0)|
)−1

.

The natural question arises how close is the lower bound (3.11). In the following
we will discuss this question and distinguish between two situations: Either all
eigenvalues of A are real, or A has at least one non-real eigenvalue. The first
case covers symmetric and hermitian matrices, the second case all other normal
matrices.

3.2.1 All eigenvalues are real: (3.11) is an equality

When all eigenvalues forming the set L are real, then it follows from a classical
result of approximation theory that (3.11) is an equality for i = 1, . . . , n − 1.
This means that for each i = 1, . . . , n−1 there exists a set Ŝ ⊆ L with |Ŝ| = i+1,
such that

ML

i = M
bS
i =

(
i+1∑

k=1

|l bS
k(0)|

)−1

,

see e.g. [1, Theorem 2.4 and Corollary 2.5]. In this case Theorem 3.1 can be
applied to the given (symmetric or hermitian) matrix A. In particular, (3.5)
shows that the coordinates of ri

0 satisfy

|%i

j |2 =
|l bS

j (0)|
i+1∑
k=1

|l bS
k(0)|

if λj ∈ Ŝ , %i

j = 0 if λj /∈ Ŝ .

Since ri
0 has only i + 1 nonzero coordinates in the eigenvectors of A, GMRES

will for this initial residual have the worst-case residual norm in the step i, but
then terminate in the subsequent step i + 1. Using a different approach, these
results have been previously derived for symmetric positive definite matrices in
the context of the conjugate gradient method [2].
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3.2.2 At least one non-real eigenvalue: (3.11) may be strict

When L contains at least one non-real eigenvalue, then (3.11) may be strict
for i = 1, . . . , n− 2. In fact, the smallest set S ⊆ L for which ML

i = MS
i might

contain as many as 2i+1 distinct elements in the general complex case, see e.g. [1,
Corollary 2.5]. For |S| > i + 1, however, the results of Theorem 3.1 cannot be
used, and we are unable to express MS

i in terms of explicit polynomials. Still, the
inequality (3.11) represents a lower bound for ML

i . Furthermore, we can find an
upper bound for ML

i using an approach similar to the proof of [7, Theorem 4.1].

Theorem 3.2. For any set L of n distinct complex points it holds

(3.12) ML

i ≤
√

(i + 1)(n− i) max
S⊆L

|S|=i+1

MS

i , i = 1, . . . , n− 2 .

Proof. Consider any normal matrix A ∈ Cn×n having n distinct eigenvalues
forming the set L. Let ri

0 denote an initial residual that yields an ith worst-case
GMRES residual rw

i and let %i
j , j = 1, . . . , n, denote the coordinates of ri

0 in the
eigenvectors of A. The min-max value ML

i can be written, according to (3.4)
and (2.8), in the form

ML

i = ‖rw

i ‖ = ‖ eH
1 (DiVi+1)+ ‖−1,

where Di ≡ diag(%i
1, . . . , %

i
n). Now consider i + 1 rows of DiVi+1 that form a

square matrix U of order i + 1 such that |det(U) | is maximal. Then, as in the
proof of [7, Theorem 4.1],

(3.13) ‖rw

i ‖ ≤
√

(i + 1)(n− i) ‖U−He1‖−1 .

The matrix U is defined by some i + 1 eigenvalues and by corresponding coordi-
nates %i

j . Denote the set of eigenvalues that define U by Ŝ = {λ bS
1 , . . . , λ bS

i+1} and
the corresponding (nonzero) coordinates by % bS

1 , . . . , % bS
i+1. Using (2.13), ‖ri

0‖ = 1,
and Cauchy’s inequality we obtain

‖U−He1‖2 =
i+1∑

j=1

∣∣∣∣∣
l bS
j (0)
% bS

j

∣∣∣∣∣

2

≥
i+1∑

j=1

∣∣∣∣∣
l bS
j (0)
% bS

j

∣∣∣∣∣

2 i+1∑

j=1

∣∣% bS
j

∣∣2 ≥



i+1∑

j=1

|l bS
j (0)|




2

,

i.e.

(3.14) ‖U−He1‖−1 ≤



i+1∑

j=1

|l bS
j (0)|



−1

= M
bS
i .

Thus we have found a set Ŝ ⊆ L, |Ŝ| = i + 1, such that

(3.15) ‖rw

i ‖ ≤
√

(i + 1)(n− i) M
bS
i .

Substituting in (3.15) for M bS
i the maximum of MS

i over all subsets S ⊆ L,
|S| = i + 1, we obtain (3.12).
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Our numerical experiments with various spectra (see Section 4) show that the
lower bound (3.11) is very tight and that the upper bound (3.12) represents an
overestimation. In particular, we conjecture that there exists a small constant
C > 1 such that

(3.16) max
S⊆L

|S|=i+1

MS

i ≤ ML

i ≤ C max
S⊆L

|S|=i+1

MS

i , i = 1, . . . , n− 2 ,

holds for all sets L containing n distinct complex numbers (for i = n− 1, (3.16)
obviously holds with C = 1). In our numerical tests the ratio

(3.17)
ML

i

max
S⊆L

|S|=i+1

MS
i

was maximal for sets L containing n numbers uniformly distributed on the unit
circle. On such sets of points, (3.17) for i = n− 2 converges from below to 4/π
as n →∞. Hence C = 4/π is the smallest constant for which (3.16) can hold for
all sets L with |L| = n, cf. the Appendix. On the other hand, we were unable
to find a set L for which the ratio (3.17) was larger than 4/π.

4 Numerical experiments

We now study the worst-case GMRES residual norms, our lower bound (3.11),
and our conjecture (3.16) with C = 4/π for four different eigenvalue sets L. In
the left part of Figures 4.1– 4.4 we plot the worst-case GMRES residual norms
‖rw

i ‖ (bold line), and the values

max
S⊆L

|S|=i+1

MS

i (solid line) ,

4
π

max
S⊆L

|S|=i+1

MS

i (dashed line) .

Our conjecture is that the dashed curve is an upper bound on the worst-case
GMRES residual norm in every step. The right part of each figure shows the
corresponding eigenvalue distributions. In the step i, we compute the values
MS

i for all subsets S ⊆ L, |S| = i + 1, and determine our bounds from their
maximum. This computation is quite expensive, so we consider only small sets
of points (n = 18). The worst-case GMRES residual norm in every step is
computed using the function cheby0 of the semidefinite programming package
SDPT3 [15]. Although this function may fail to converge when ‖rw

i ‖ becomes
very small (see below for details), it is the most reliable function we know for this
type of computation. All experiments are performed in Matlab 6.5 Release 13 on
an AMD Athlon XP 2100+ personal computer with machine precision ε ∼ 10−16.

Roots of unity. In the first numerical experiment we consider the eigenvalue
set L consisting of the 18th roots of unity, i.e.

(4.1) λk = ei 2kπ
18 , k = 1, . . . , 18 .
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Figure 4.1: Worst-case GMRES and our bounds for roots of unity.
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Figure 4.2: Worst-case GMRES and our bounds for random eigenvalues on the
unit circle.

In this case worst-case GMRES completely stagnates, cf. [18], which is confirmed
by the bold line in Figure 4.1. The lower bound (3.11) closely approximates the
worst-case residual norm, and the lower bound multiplied by 4/π represents
an upper bound. As shown in the Appendix, see also [12], the lower bound
approaches π/4 from above in the step i = n − 2 (here: i = 16) when n → ∞.
Hence in this step the lower bound multiplied by 4/π is proven to be a (sharp)
upper bound on the worst-case GMRES. The tightness of this bound, even for
the moderate n = 18, is clearly visible in Figure 4.1.

Random eigenvalues on the unit circle. For random eigenvalues on the unit
circle (cf. the right part of Figure 4.2), the worst-case GMRES residual norms
do not stagnate completely, but still converge very slowly (decreasing only about
one order of magnitude until the next-to-last step). The lower bound (3.11) is
very close to the worst-case residual norm, only in the iteration steps 4, 7, 11 and
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Figure 4.3: Worst-case GMRES and our bounds for random eigenvalues in the
region [0, 1]× i [0, 1].
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Figure 4.4: Worst-case GMRES and our bounds for the Helmert matrix.

15 they differ slightly. As above, the lower bound multiplied by 4/π represents
an upper bound.

Random eigenvalues in the region [0, 1]× i [0, 1]. In this case the convergence
of the worst-case residual norms is moderately fast; they decrease about 4 orders
of magnitude until the next-to-last step, cf. Figure 4.3. Again the lower bound
(3.11) is a good estimate (bold and soild line almost coincide), and the dashed
line represents an upper bound.

Helmert matrix. For the last experiment we use the Helmert matrix generated
by the Matlab command gallery(’orthog’,18,4). Helmert matrices occur in
a number of practical problems, for example in applied statistics [9]. Our matrix
is orthogonal, and the eigenvalues cluster around −1, see the right part of Fig-
ure 4.4. The worst-case GMRES residual norm decreases quickly throughout the
iteration. Until the 12th step the worst-case curve and the lower bound almost



THE WORST-CASE GMRES FOR NORMAL MATRICES 17

coincide, and the lower bound multiplied by 4/π represents an upper bound.
However, when the worst-case residual norm drops below the level of 10−10 (it-
eration step 13 and beyond), the function cheby0 apparently has reached its
final level of accuracy and henceforth stagnates. Such stagnation (sometimes di-
vergence) can be generally observed when the final accuracy level is reached, but
we are unaware of an analysis how this level depends on the problem parameters.

In summary, the numerical experiments demonstrate that our lower bound
(3.11) is very tight. Moreover, in all experiments the lower bound multiplied
by 4/π represents an upper bound on the worst-case GMRES residual norms,
which supports that our conjecture (3.16) with C = 4/π is true. Note that in
all experiments the bound (3.12), which contains a factor between n1/2 and n,
represents an overestimation.

5 Concluding discussion

We conclude the paper with a discussion of our results and starting points for
further work.

1. Interpretation of the lower bound (3.11). Recall that the worst-case GMRES
residual norm in step i is equal to the min-max value ML

i . This value represents
the solution of an ith degree polynomial approximation problem on n distinct
eigenvalues forming the set L. We bound this value from below by the same
approximation problem, but on subsets of L containing exactly i+1 eigenvalues.
The solution of each “reduced”problem (polynomial of degree i on i + 1 distinct
points) is given in Theorem 3.1.

For illustration of this process we consider the set L consisting of the nth roots
of unity, cf. Figure 4.1 for n = 18. As shown in [18, Theorem 3.4], worst-case
GMRES completely stagnates in this case, i.e. ML

n−1 = 1. Intuitively, for each
i < n − 1 there exists a subset Ŝ ⊂ L, |Ŝ| = i + 1, that closely resembles the
(i + 1)st roots of unity. For such a set the min-max value M bS

i is close to one
(in orders of magnitude), which is why the lower bound (3.11) is very tight. In
particular, whenever n mod (i + 1) = 0, there exists a set Ŝ ⊂ L consisting of
exactly the (i+1)st roots of unity. For all such iteration steps i, the lower bound
(3.11) is an equality, cf. i = 1, 2, 5, 8 for n = 18 in Figure 4.1.

Note that here, and for general sets L, MS
i is close to ML

i only for special
sets S ⊂ L with |S| = i + 1. Analyzing the structure of these sets based on the
eigenvalue distribution of A is a topic we plan to pursue in our future work.

2. Worst case vs. average (unbiased) case. Due to orthogonality of the eigen-
vectors of A, initial residuals with (approximately) equal components in all eigen-
vectors are often considered the “average” case, see e.g. [5, Section 7]. We prefer
to call them “unbiased” since they are not biased towards a certain eigenvector
direction. For simplicity, consider any unbiased unit norm initial residual ru

0 with
eigenvector components of equal size, i.e. |%u

j | = n−1/2, j = 1, . . . , n. Then (2.5)
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and (3.4) show that the ith GMRES residual ru
i corresponding to ru

0 satisfies

‖rw

i ‖ ≥ ‖ru

i ‖ = n−1/2 min
p∈πi




n∑

j=1

|p(λj)|2


−1/2

≥ n−1/2 min
p∈πi

max
1≤j≤n

|p(λj)|

= n−1/2 ‖rw

i ‖ .

Since the unbiased (average) and the worst case GMRES residual norms agree
up to a factor of n1/2, our results are relevant beyond the specific analysis of the
worst-case GMRES.

In practical applications the initial residual may, for example, be biased to-
wards the eigenvalue distribution of A. Often such biased initial residuals result
from choosing a nonzero initial guess x0. The biased case depends strongly on
the specific application, and a general analysis is beyond the scope of this paper.
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Appendix

Proposition A.1. The smallest constant C for which (3.16) can hold for all
sets L containing n distinct complex numbers is C = 4/π.

Proof. We will show that for the set L = {λ1, . . . , λn} defined by

(A.1) λk = ei 2kπ
n , k = 1, . . . , n ,

the ratio (3.17) for i = n− 2 converges from below to C = 4/π as n →∞.
Note that all sets S ⊂ L with |S| = n− 1 can be obtained by rotation of the

set L− {λ1}. Therefore

max
S⊆L

|S|=n−1

MS

n−2 = ML−{λ1}
n−2 =




n∑

k=2

n∏
j=2
j 6=k

|λj |
|λj − λk|




−1

.

Substituting |λj | = 1 for all j, and

|λj − λk| = |ei 2jπ
n − ei 2kπ

n | = 2 sin
( |j − k|π

n

)
,

shows that

ML−{λ1}
n−2 =




n−1∑

k=1

1
2n−2

n−1∏
j=1
j 6=k

1
sin

(
jπ
n

)




−1

= 2n−2




n−1∑
k=1

sin
(

kπ
n

)

n−1∏
j=1

sin
(

jπ
n

)




−1

.
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Figure A.1: The approximation of the integral for n even (left part) and n odd
(right part).

Using the standard formula

n−1∏

j=1

sin
(

jπ

n

)
=

n

2n−1
,

we obtain

(A.2) ML−{λ1}
n−2 =

[
2
n

n−1∑

k=1

sin
(

kπ

n

)]−1

=
π

2

[
π

n

n−1∑

k=1

sin
(

kπ

n

)]−1

.

Note that the expression on the right hand side of (A.2) is an approximation of
an integral,

π

n

n−1∑

k=1

sin
(

kπ

n

)
<

∫ π

0

sin (x) dx = 2 , lim
n→∞

[
π

n

n−1∑

k=1

sin
(

kπ

n

)]
= 2 ,

see Figure A.1 for a numerical illustration. Therefore,

ML−{λ1}
n−2 >

π

4
, lim

n→∞
ML−{λ1}

n−2 =
π

4
.

As shown in [18], complete stagnation of GMRES can occur for normal matri-
ces having the spectrum L, and hence ML

i = 1 for i = 1, . . . , n− 1. Therefore,

ML

n−2 <
4
π

max
S⊆L

|S|=n−1

MS

i , lim
n→∞

[
4
π

max
S⊆L

|S|=n−1

MS

i

]
= ML

n−2 ,

which completes the proof. A similar result can be shown for other i; see [12]
for more details.
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