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Abstract

We give new and simple proofs of some classical properties of hereditarily inde-
composable Banach spaces, including the result by W. T. Gowers and B. Maurey
that a hereditarily indecomposable Banach space cannot be isomorphic to a proper
subspace of itself. These proofs do not make use of spectral theory and therefore,
they work in real spaces as well as in complex spaces. We use our method to prove
some new results. For example, we give a quantitative version of the latter result by
Gowers and Maurey and deduce that Banach spaces that are isometric to all of their
subspaces should have an unconditional basis with unconditional constant arbitrar-
ily close to 1. We also study the homotopy relation between into isomorphisms from
hereditarily indecomposable spaces.

1 Introduction

In this paper, unless otherwise specified, when speaking about a Banach space (or simply
a space), we shall mean an infinite-dimensional Banach space, and by subspace of a
Banach space, we shall always mean infinite-dimensional, closed subspace. By operator,
we shall always mean bounded linear operator, and by isometry, we shall mean linear
(non-necessarily surjective) isometry. The unit sphere of a Banach space X will be
denoted by SX .

In 1993, W. T. Gowers and B. Maurey [5] built the first example of a Banach space
containing no unconditional basic sequence, thus solving the longstanding unconditional
basic sequence problem. The space they built actually has a much stronger property: it
is hereditarily indecomposable (HI), i.e. no two subspaces of it are in topological direct
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sum. In the same paper, the authors prove several properties of HI spaces. Among them,
the following:

Theorem 1.1. An HI space is isomorphic to no proper subspace of itself.

Following Maurey [8], an operator T : X Ñ Y between two Banach spaces will be
called an into isomorphism if it is an isomorphism between X and its image (or equiv-
alently, if there exists c ą 0 such that @x P X }T pxq} ě c}x}). Recall that an operator
S : X Ñ Y between two Banach spaces is strictly singular if no restriction of S to a
subspace of X is an into isomorphism. In their paper, Gowers and Maurey get Theorem
1.1 for complex HI spaces as an immediate consequence (using basic Fredholm theory)
of the following result:

Theorem 1.2. If X is a complex HI space then every operator T : X Ñ X can be written
T “ λ IdX `S, where λ P C and S is a strictly singular operator.

Their proof of Theorem 1.2 makes use of Fredholm theory and spectral theory, thus
explaining the fact that it only works for complex spaces. Actually, it turns out that this
result is not true in general for real HI spaces. For such spaces X, the authors prove a
general structural result for operators from X to X, similar to Theorem 1.2, by passing
to the complexification of X. From this result, they deduce Theorem 1.1 for real HI
spaces. As they mention, they do not know any direct proof of Theorem 1.1 in the real
case. Later, V. Ferenczi [2] gave a new proof of Theorem 1.2 using no spectral theory
but rather Banach algebra methods (he actually proves a more general result); however,
as far as the author of the present article knows, no direct proof of Theorem 1.1 for real
spaces has been known by now.

The main aim of this paper is to introduce new methods in the theory of HI spaces,
using no spectral theory but only Fredholm theory, and thus working in real HI spaces
as well as in complex HI spaces. These methods will allow us to give new and simpler
proofs of some classical properties of HI spaces, including Theorem 1.1; this will be done
in Section 3. Our hope is that these new methods can be adapted more easily to broader
contexts. We present such an adaptation in Section 4, where a quantitative version
of Theorem 1.1 is proved. This allows us to start an investigation of the isometrically
homogeneous space problem, asking if a space that is isometric to all of its subspaces
should necessarily be isometric to `2. Finally, in Section 5, we prove some results about
the homotopy relation between into isomorphisms from HI spaces. We deduce from them
that the general linear group of the real HI space built by Gowers and Maurey in [5] has
exactly 4 connected components.

We start this paper with recalling some results in Fredholm theory, in Section 2.

2 Fredholm theory

In this section, we recall some results in Fredholm theory that will be useful in the rest
of this paper. For a more detailed presentation and proofs of these results, we refer to

2



the survey [8] on Banach spaces with few operators, that contains a good introduction
to Fredholm theory (see Sections 3, 4 and 6).

In the rest of this paper, all Banach spaces will be over the field K :“ R or C, the
proofs working as well in both cases.

Let X,Y be two Banach spaces. Let LpX,Y q denote the space of bounded operators
from X to Y (when X “ Y , then this space will simply be denoted by LpXq). Equip
LpX,Y q with the operator norm denoted by } ¨ }, and with the associated topology. Let
SpX,Y q denote the set of strictly singular operators S : X ÝÑ Y . The following fact is
classical:

Lemma 2.1. For every Banach spaces X and Y , SpX,Y q is a closed vector subspace of
LpX,Y q.

For T P LpX,Y q, let npT q P N Y t`8u and dpT q P N Y t`8u denote respectively
the dimension of the kernel of T and the codimension of the image of T . The operator
T is said to be semi-Fredholm if it has closed image and if one of the numbers npT q
and dpT q is finite, and Fredholm if both numbers npT q and dpT q are finite (this implies
that T has closed image). Let FredpX,Y q and F̂redpX,Y q denote respectively the set
of Fredholm operators and of semi-Fredholm operators from X to Y , seen as subsets of
LpX,Y q with the induced topology. For T P F̂redpX,Y q, the Fredholm index of T is
defined by indpT q “ npT q ´ dpT q P Z Y t´8,`8u. One of the fundamental results of
Fredholm theory is the following:

Theorem 2.2. F̂redpX,Y q is an open subset of LpX,Y q, and the Fredholm index
ind : F̂redpX,Y q ÝÑ ZY t´8,`8u is locally constant.

Say that an operator T : X Ñ Y is finitely singular if there exists a finite-codimensional
subspace X0 of X such that TæX0 is an into isomorphism. An operator which is not
finitely singular will be called infinitely singular. We have the two following results:

Proposition 2.3. An operator T : X Ñ Y is finitely singular if and only if it is semi-
Fredholm with indpT q ă `8.

Proposition 2.4. An operator T : X Ñ Y is infinitely singular if and only if for every
ε ą 0, there exists a subspace Xε of X such that }TæXε} ď ε.

Finally we mention a last result that we will not use in our proofs, but which is the
key of the original proof of Theorem 1.1 from Theorem 1.2:

Proposition 2.5. Let T : X Ñ Y be a Fredholm operator and S : X Ñ Y be a strictly
singular operator. Then T ` S is Fredholm and indpT ` Sq “ indpT q.

The latter result, combined with Theorem 1.2, gives that every element of LpXq, for
X a complex HI space, is either strictly singular or Fredholm with index 0. In particular,
such an operator cannot be an isomorphism between X and a proper subspace.
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3 Subspaces, quotients and operators

In this section we give a new proof of Theorem 1.1 and of some related results. Some
elements of our proofs were already present in [5]; to make this paper self-contained, we
shall state them as lemmas and prove them.

Given X a Banach space and Y Ď X a subspace, the inclusion embedding Y ãÑ X
will be denoted by iY,X in the rest of this paper. We say that λ P K is an infinitely
singular value of the operator T : Y Ñ X when T ´ λ iY,X is infinitely singular. The
next lemma was already present as a remark in [5].

Lemma 3.1. If X is a Banach space, Y Ď X an HI subspace, and T : Y Ñ X an
operator, then T has at most one infinitely singular value.

Proof. Suppose that λ, µ P K are two infinitely singular values of T . Let ε ą 0; by
Proposition 2.4 we can find two subspaces Uε, Vε of Y such that }pT ´ λ iY,XqæUε} ď ε
and }pT ´ µ iY,XqæVε} ď ε. The subspaces Uε and Vε are not in topological direct sum,
so we can find uε P SUε and vε P SVε such that }uε ´ vε} ď ε. And we have:

|λ´ µ| “ }λuε ´ µuε}

ď }λuε ´ µvε} ` |µ| ¨ }vε ´ uε}

ď }λuε ´ T puεq} ` }T puεq ´ T pvεq} ` }T pvεq ´ µvε} ` |µ|ε

ď ε` }T } ¨ }uε ´ vε} ` ε` |µ|ε

ď p2` |µ| ` }T }qε.

Thus, making ε tend to 0, we deduce that λ “ µ.

The next lemma is the key of our proof. It is valid for every Banach space X, not
necessarily HI.

Lemma 3.2. Let X be a Banach space and T P LpXq be a semi-Fredholm operator with
nonzero index. Then T has at least two distinct real infinitely singular values, a positive
one and a negative one.

Proof. For t P r0, 1s, define Tt “ tT`p1´tq IdX . We show that there exists t P p0, 1q such
that Tt is infinitely singular; this will imply that t´1

t is a negative infinitely singular value
of T . Suppose not. Then by Proposition 2.3, for every t P r0, 1s, Tt is semi-Fredholm.
So letting fptq “ indpTtq, we define a function f : r0, 1s ÝÑ ZYt´8,`8u; by Theorem
2.2, this function is locally constant, so constant. This is a contradiction since fp0q “ 0
and fp1q ‰ 0.

Applying the conclusion of the last paragraph to ´T , we get that this operator has
a negative infinitely singular value, so T has a positive infinitely singular value.

We can now conclude the proof of Theorem 1.1. Let X be an HI space and T P LpXq
be an isomorphism from X to a proper subspace of X. Then T is semi-Fredholm with
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indpT q ă 0, so by Lemma 3.2 it has at least two distinct infinitely singular values. This
contradicts Lemma 3.1.

We now give a new proof of a generalization of Theorem 1.1 first proved by Ferenczi
[3].

Theorem 3.3. Let X be an HI space, and let Z Ď Y be subspaces of X, with Z not
necessarily infinite-dimensional. Suppose that either the inclusion Y Ď X is strict, or
Z ‰ t0u. Then X is not isomorphic to Y {Z.

Proof. We follow the same approach as for Theorem 1.1. Let π : Y � Y {Z be the
quotient map. Suppose that there exists an isomorphism T : Y {Z Ñ X. Then both
iY,X and T ˝ π are semi-Fredholm operators Y Ñ X, and we have indpiY,Xq ď 0 and
indpT ˝ πq ě 0. Moreover, one of the latter inequalities has to be strict. So indpiY,Xq ‰
indpT ˝ πq.

By the continuity of the Fredholm index, there should exist t P p0, 1q such that
tT ˝π`p1´ tq iY,X is not semi-Fredholm; in particular, by Proposition 2.3, it is infinitely
singular. This means that t´1

t is a negative infinitely singular value of T ˝ π. Applying
the same argument to ´T , we get a positive infinitely singular value of T ˝ π. However,
this operator is defined on Y which is HI as a subspace of X, so Lemma 3.1 gives us a
contradiction.

We finish this section with a direct proof of the following result, which, as said before,
is an immediate consequence of Theorem 1.2 and Proposition 2.5 in the special case of
complex spaces, but which is also valid for real spaces.

Theorem 3.4. Let T P LpXq, where X is an HI space. Then either T is Fredholm with
index 0, or T is strictly singular.

We will actually prove the following slightly more general result.

Theorem 3.5. Let X be an HI space and Y be an arbitrary Banach space. Then every
operator T : X Ñ Y is either strictly singular, or semi-Fredholm with indpT q ă `8;
moreover all elements of F̂redpX,Y q have the same index.

In order to prove Theorem 3.5, we need the following lemma, that was already present
as a remark in [5].

Lemma 3.6. Let T P LpX,Y q, where X is an HI space and Y is an arbitrary Banach
space. Then T is infinitely singular if and only if it is strictly singular.

Proof. One implication directly follows from the definitions. For the other, suppose that
T is infinitely singular. We fix Z a subspace of X and ε ą 0, and we want to find z P SZ
such that }T pzq} ă ε.

Since T is infinitely singular, there exists a subspace Xε of X such that }TæXε} ď
ε
2 .

Since Z and Xε are not in topological direct sum, we can find z P SZ and x P SXε with
}z ´ x} ď ε

2}T } . Then we have:

}T pzq} ď }T pxq} ` }T pz ´ xq} ď
ε

2
` }T } ¨

ε

2}T }
ď ε,
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as wanted.

Proof of Theorem 3.5. If T P LpX,Y q is not strictly singular, then it is finitely singular
by Lemma 3.6, so by Proposition 2.3, it is semi-Fredholm and indpT q ă `8.

We now fix S, T P F̂redpX,Y q and we suppose, towards a contradiction, that
indpSq ‰ indpT q. Using a similar argument as in the proof of Lemma 3.2, we get
µ ă 0 ă λ such that both S ´ λT and S ´ µT are infinitely singular. By Lemma 3.6,
they are strictly singular. Since SpX,Y q is a vector subspace of LpX,Y q (see Lemma
2.1), we deduce that both S and T are strictly singular, so infinitely singular; since they
are semi-Fredholm, we necessarily have indpSq “ indpT q “ `8, a contradiction.

4 A quantitative version

Say that a Banach space X is homogeneous if it is isomorphic to all of its subspaces, and
isometrically homogeneous if it is isometric to all of its subspaces. In [1], the authors
ask the following question:

Question 4.1 (Cúth–Doležal–Doucha–Kurka). Is every isometrically homogeneous Ba-
nach space isometric to `2?

This problem, that we will call the isometrically homogeneous space problem, is an
isometric version of the homogeneous space problem, asking whether every homogeneous
space is isomorphic to `2. The latter problem was solved positively in the nineties as a
combination of the three following results:

• every Banach space either has a subspace isomorphic to `2, or has a subspace
without an unconditional basis (Komorowski–Tomczak-Jaegermann, [7]);

• every Banach space either has a subspace with an unconditional basis, or has an
HI subspace (Gowers’ first dichotomy, [4]);

• and Theorem 1.1, by Gowers and Maurey.

To investigate the isometrically homogeneous space problem, it is tempting to try to find
quantitative versions of the above results. Gowers’ first dichotomy admits a quantitative
version, that will be presented below (Theorem 4.5) and which was proved by Gowers
himself as a step of the proof of the same non-quantitative result. In this section, we
give a quantitative version of Theorem 1.1. This version, combined with the quantitative
version of Gowers’ first dichotomy, will give us the following result:

Theorem 4.2. Let X be an isometrically homogeneous Banach space. Then for every
ε ą 0, X admits a p1` εq-unconditional basis.
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We don’t know if there is a sufficiently good quantitative version of Komorowski–
Tomczak-Jaegermann’s theorem to solve positively the isometrically homogeneous space
problem.

In the rest of this section, we fix a Banach space X. Observe that if Y and Z are
two subspaces of X, then Y and Z are not in topological direct sum if and only if for
every C ě 1, there exists y P Y and z P Z with }y ` z} ą C}y ´ z}. This motivates the
following definition:

Definition 4.3. For C ě 1, we say that X is C-HI if for every subspaces Y, Z Ď X,
there exists y P Y and z P Z such that }y ` z} ą C}y ´ z}.

In particular, X is HI if and only if it is C-HI for arbitrarily large C. A slightly
different definition of C-HI spaces had already been given by Gowers in [4], for spaces
with a basis, only taking into account block-subspaces. However, is is easy to see that
these two notions are equivalent up to an arbitrarily small change of C.

Recall that two Banach spaces Y and Z are said to be C-isomorphic, for some C ě 1,
if there is an isomorphism T : Y Ñ Z with }T } ¨ }T´1} ď C. In particular, two spaces
are 1-isomorphic if and only if they are isometric. Our quantitative version of Theorem
1.1 is the following:

Theorem 4.4. Let C ě 1. Suppose that X is pC ` εq-HI for some ε ą 0. Then X is
C-isomorphic to no proper subspace of itself.

Proof. Suppose that X is C-isomorphic to a proper subspace Y Ď X. Let T : X Ñ Y
be an isomorphism with }T } ď C and }T´1} “ 1; we see T as an operator X Ñ X.
By Lemma 3.2, T has at least two real infinitely singular values, a positive one that we
denote by λ and a negative one that we denote by ´µ. Replacing T with ´T if necessary,
we can assume that λ ď µ. We let ν “ µ ´ λ. For every 0 ă a ă 1 and every x P X,
we have }T pxq ´ ax} ě }T pxq} ´ a}x} ě p1´ aq}x}, so T ´ a IdX is an into isomorphism
and in particular, it is finitely singular. We deduce that λ ě 1.

We now use a similar method as in the proof of Lemma 3.1 to conclude. Fix
ε ą 0. Then there exists subspaces Y,Z Ď X such that }pT ´ λ IdXqæY } ď ε and
}pT ` µ IdXqæZ} ď ε. Thus, for every y P Y and z P Z, we have:

pλ` µq}y ` z} “ }2λy ` 2µz ` pµ´ λqpy ´ zq}

ď 2}λy ` µz} ` ν}y ´ z}

ď 2p}λy ´ T pyq} ` }T pyq ´ T pzq} ` }T pzq ` µz}q ` ν}y ´ z}

ď 2εp}y} ` }z}q ` 2C}y ´ z} ` ν}y ´ z}

ď 2εp}y ` z} ` }y ´ z}q ` p2C ` νq}y ´ z}

Since λ ě 1, we have 2` ν ď λ` µ. Using this inequality on the left-hand side and the
fact that 2C ` ν ď p2` νqC on the right-hand side, we get that:

p2` ν ´ 2εq}y ` z} ď pp2` νqC ` 2εq}y ´ z}.
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We deduce that X is not p2`νqC`2ε
2`ν´2ε -HI. Since p2`νqC`2ε

2`ν´2ε tends to C when ε tends to 0,
we get the wanted result.

Now the quantitative version of Gowers’ first dichotomy, proved in [4] (see Corollary
3.2) is the following:

Theorem 4.5 (Gowers). Let C ě 1 and ε ą 0. Then X either has a subspace with a
pC ` εq-unconditional basis, or has a C-HI subspace.

This, combined with Theorem 4.4, is enough to prove Theorem 4.2. Indeed, if X is
isometrically homogeneous, then, fixing ε ą 0 and applying Theorem 4.4 to C “ 1, we
get that X is not p1`εq-HI, so contains no p1`εq-HI subspace. By Theorem 4.5 applied
to C “ 1 ` ε, we get that X has a subspace with a p1 ` 2εq-unconditional basis, so X
itself has a p1` 2εq-unconditional basis.

5 Homotopy between into isomorphisms

Given X and Y two Banach spaces, let EmbpY,Xq be the set all T P LpY,Xq that
are into isomorphisms. This is an open subset of LpY,Xq. Observe that if X is HI,
then by Theorem 1.1, EmbpX,Xq is the general linear group of X, denoted by GLpXq.
Given two operators S, T P EmbpY,Xq, we say that S and T are homotopic if there is a
continuous mapping:

r0, 1s Ñ EmbpY,Xq
t ÞÑ Tt

such that T0 “ S and T1 “ T . Homotopy is an equivalence relation whose classes are
exactly the connected components of EmbpY,Xq. In [8], the following result is mentioned
as an exercise, in the special case of complex spaces:

Theorem 5.1. Let X be an HI space and Y,Z two subspaces of X that are isomorphic.
Then there is an into isomorphism T : Y Ñ X with T pY q “ Z, and such that T is
homotopic to iY,X in EmbpY,Xq.

In this section, we give a proof of Theorem 5.1 working as well in the complex as in
the real case. This result can be seen as an analogue of Theorem 1.1 for subspaces: if two
subspaces of an HI space are isomorphic, then none of them can be “too deep” compared
to the other. In particular, Theorem 1.1 is a consequence of Theorem 5.1: given X an
HI space and Y Ď X a proper subspace, if Y is isomorphic to X, then IdX should be
homotopic to an isomorphism from X to Y , which is impossible by local constancy of
the Fredholm index.

We actually prove a slightly stronger result than Theorem 5.1. Given Y a Banach
space, recall that an operator R : Y Ñ Y is a reflection of Y if there exists H Ď Y
a hyperplane and x0 P Y zt0u such that @x P H Rpxq “ x and Rpx0q “ ´x0. Call
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an antireflection of Y an operator of the form ´R, where R is a reflection of Y . Any
two reflections R0 and R1 of the same space Y are homotopic in GLpY q: indeed, given
x0, x1 P Y zt0u and l0, l1 P Y ˚zt0u such that for all i, kerpliq “ kerpRi ´ IdY q and
Ripxiq “ ´xi, it is not hard to find, for some choice of signs δ, ε P t´1, 1u, a continuous
path between px0, l0q and pδx1, εl1q in the set tpx, lq P X ˆX˚ | lpxq ‰ 0u. This directly
gives a homotopy between R0 and R1. In the same way, any two antireflections of the
same space are homotopic. In what follows, for simplicity of notation, given Y Ď X
two Banach spaces, we will sometimes confound an automorphism U of Y with the into
isomorphism iY,X ˝U : Y Ñ X. The theorem we prove is the following:

Theorem 5.2. Let X be a Banach space, Y be an HI subspace of X, and T : Y Ñ X be
an into isomorphism. Then T is either homotopic, in EmbpY,Xq, to iY,X , or to ´ iY,X ,
or to all reflections of Y , or to all antireflections of Y . Moreover, this result can be
refined in the following cases:

1. If Y ‰ X, then T is either homotopic to iY,X , or to ´ iY,X ;

2. If K “ C, then T is homotopic to iY,X .

Theorem 5.2 implies Theorem 5.1: indeed, if U is any isomorphism Y Ñ Z, then
Theorem 5.2 shows that U is homotopic, in EmbpY,Xq, to an automorphism V of Y , so
U ˝ V ´1 is an isomorphism Y Ñ Z which is homotopic, in EmbpY,Xq, to iY,X . Another
consequence of Theorem 5.2 is that if Y is any HI space and X any Banach space, then
EmbpY,Xq has:

• at most four connected components if K “ R and X is isomorphic to Y ;

• at most two connected components if K “ R and X is not isomorphic to Y ;

• at most one connected component if K “ C.

In what follows, we use the following notation. If Y and Z are (finite- or infinite-
dimensional) subspaces of the same space X that are in topological direct sum, and if
T : Y Ñ X and U : Z Ñ X are two operators, then we denote by T ‘ U the unique
operator Y ‘ Z Ñ X extending both T and U . The main ingredient in the proof of
Theorem 5.2 is the following lemma:

Lemma 5.3. Let X be a Banach space, Z Ď X be a subspace, and F Ď X be a finite-
dimensional subspace such that Z X F “ t0u. Let Y “ Z ‘ F , let T : Y Ñ X be an
into isomorphism, and suppose that TæZ is homotopic to iZ,X in EmbpZ,Xq. Let R be a
reflection of F . Then, in EmbpY,Xq, T is either homotopic to iY,X , or to iZ,X ‘R.

Proof of Lemma 5.3. We first prove that the special case where dimpF q “ 1 implies the
general case. This will be done by induction on dimpF q. Suppose dimpF q ě 2 and let R
be a reflection of F . Let G “ kerpR´ IdF q and let x0 P F zt0u such that Rpx0q “ ´x0, so
we have F “ G‘Kx0. Let R1 be any reflection of G and let R2 “ R1‘ iKx0,F , which is a
reflection of F . Applying the induction hypothesis to Z, G, the operator TæZ‘G and the
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reflection R1, we obtain that TæZ‘G is either homotopic to iZ‘G,X , or to iZ,X ‘R
1. So

either TæZ‘G, or TæZ‘pTæG ˝R
1q is homotopic to iZ‘G,X . Applying the one-dimensional

case to Z‘G, Kx0, respectively the operator T or the operator TæZ‘pTæF ˝R
2q, and the

reflection ´ IdKx0 , we get that one of the operators T and TæZ‘pTæF ˝R
2q is homotopic

to one of the operators iY,X and iY‘G,X ‘p´ iKx0,Xq “ iZ,X ‘R. Summarizing, we get
that the operator T is homotopic to one of the four following operators:

• iY,X ;

• iZ,X ‘R;

• iZ,X ‘R
2;

• iZ,X ‘pR ˝R
2q.

But since the reflections R and R2 are homotopic in GLpF q, we are actually in one of
the first two cases, which finishes the first part of this proof.

We now prove the result in the special case where dimpF q “ 1. Let
´

rTt

¯

tPr0,1s
be

a homotopy between iZ,X and TæZ in EmbpZ,Xq. By local constancy of the Fredholm

index, for every t P r0, 1s we have rTtpZq ‰ X. So by a standard compacity argument,
we can find 0 “ t0 ă t1 ă . . . ă tn “ 1 and vectors x0, . . . , xn´1 P X such that for every
i ă n and every t P rti, ti`1s, we have xi R rTtpZq. We can even assume that F “ Kx0
and that xn´1 “ T px0q.

For every t P r0, 1s and every x P X, we abusively denote by rTt‘x the unique operator
U : Y Ñ X such that UæZ “ rTt and Upx0q “ x. Since x0 ÞÑ ´x0 is the only reflection of

F , what we have to prove is that T “ rT1‘ xn´1 is homotopic to rT0‘ εx0 in EmbpY,Xq
for some sign ε P t´1, 1u. To prove that, first observe that for every i ă n and for every
ε P t´1, 1u, rTti ‘ εxi and rTti`1 ‘ εxi are homotopic in EmbpY,Xq. So to conclude, it is
enough to show that for every 1 ď i ă n and for every sign ε P t´1, 1u, there exists a
sign δ P t´1, 1u such that rTti ‘ εxi is homotopic to rTti ‘ δxi´1 in EmbpY,Xq.

To see this, suppose that both segments rεxi, xi´1s and rεxi,´xi´1s intersect rTtipZq.
This means that there exists t, t1 P p0, 1q such that tεxi ` p1 ´ tqxi´1 P rTtipZq and

t1εxi ´ p1´ t
1qxi´1 P rTtipZq. So

´

t
1´t `

t1

1´t1

¯

εxi P rTtipZq, a contradiction. Thus, there

exists δ P t´1, 1u such that the segment rεxi, δxi´1s does not intersect rTtipZq. This
means that the family p rTti ‘ptεxi`p1´ tqδxi´1qqtPr0,1s is a homotopy between rTti ‘ εxi

and rTti ‘ δxi´1 in EmbpY,Xq, concluding the proof.

Proof of Theorem 5.2. We first prove the general case. Lemma 3.1 shows us that T
has at most one infinitely singular value. Replacing T with ´T if necessary, we may
assume that T has no nonpositive infinitely singular value. This implies that for every
t P r0, 1s, the operator tT ` p1 ´ tq iY,X is finitely singular. For every t P r0, 1s, we can
find Zt a finite-codimensional subspace of Y such that ptT ` p1 ´ tq iY,XqæZt is an into
isomorphism; there exists Ut a neighborhood of t in r0, 1s such that for every t1 P Ut,

10



pt1T ` p1 ´ t1q iY,XqæZt is still an into isomorphism. Select t1, . . . tn P r0, 1s such that
Ťn
i“1 Uti “ r0, 1s, and let Z “

Şn
i“1 Zti . Then Z is a finite-codimensional subspace of

Y such that for every t P r0, 1s, ptT ` p1´ tq iY,XqæZ is an into isomorphism. Thus, TæZ
and iZ,X are homotopic in EmbpZ,Xq.

Taking F any complement of Z in Y and R any reflection of F , we can apply Lemma
5.3 to Z, F , T and R, showing that T is either homotopic to iY,X , or to iZ,X ‘R in
EmbpY,Xq. This concludes the general case, since iZ,X ‘R is a reflection of Y .

To prove the case where Y ‰ X, it is enough to show that any reflection of Y is
homotopic to iY,X in EmbpY,Xq. Given R such a reflection, consider x0 R Y any vector,
let Z “ Y ‘ Kx0 and R1 “ R ‘ iKx0,Z . This defines a reflection of Z. This reflection
is homotopic to the reflection iY,Z ‘p´ iKx0,Zq of Z in EmbpZ,Xq, and this homotopy
restricts into a homotopy between R and iY,X in EmbpY,Xq.

To prove the case where K “ C, it is enough to prove that for any complex space
X, and for any decomposition X “ Y ‘ Z (where Y and Z can be finite- or infinite-
dimensional), the operator iY,X ‘p´ iZ,Xq is homotopic to IdX . A homotopy is given by
`

iY,X ‘
`

eiπt iZ,X
˘˘

tPr0,1s
.

Remark 5.4. Theorem 5.2 is optimal, in the sense that there exists a real HI space X
such that for every reflection R of X, the operators IdX , ´ IdX , R and ´R are pairwise
non-homotopic in GLpXq, and for every subspace Y of X, the operators iY,X and ´ iY,X
are non-homotopic in EmbpY,Xq. In particular, there exists a real Banach space whose
general linear group has exactly four connected components. We sketch the proof of
these facts below.

Take for X the real space built by Gowers and Maurey in [5]. It has the following
property: for every subspace Y of X, every operator T : Y Ñ X has the form λ iY,X `S,
where λ P R and S is strictly singular. It is not hard to see that λ is continuous in T
(use for example a similar method as in the proof of Lemma 3.1), thus showing that iY,X
and ´ iY,X cannot be homotopic in EmbpY,Xq.

We now prove that IdX cannot be homotopic to a reflection of X in GLpXq. For
a real Banach space Y and an operator T : Y Ñ Y , we denote its complexification by
TC : Y C Ñ Y C (see [8], Section 2 for more details about complexification). Denote by
σpT q the spectrum of an operator T on a complex space. Recall the following facts:

1. If T is an operator on a real space, then the spectrum of TC is invariant under
conjugation, and if λ is an eigenvalue of TC, then λ̄ is also one, with the same
multiplicity.

2. The complexification of a strictly singular operator is strictly singular (see [8],
Exercise 6.1).

3. The spectrum of a strictly singular operator on a complex space consists in 0
together with a either finitely many nonzero eigenvalues with finite multiplicity, or
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a sequence of nonzero eigenvalues with finite multiplicity converging to 0 (see [8],
Proposition 6.1).

4. Suppose T : Y Ñ Y is an operator on a complex space, and Γ is a rectifiable,
simple closed curve in C such that Γ X σpT q “ ∅. Denote by V the bounded
connected component of CzΓ, and suppose that σpT qXV consists in finitely many
eigenvalues of T with finite multiplicity. Then for every S P LpY q close enough
to T , σpSq X V consists in finitely many eigenvalues of S and the sum of their
multiplicities is equal to the sum of the multiplicities of the eigenvalues of T in V
(see [6], Chapter Four, Subsection 3.5).

Now if there exists a homotopy pTtqtPr0,1s in GLpXq between T0 “ IdX and T1 “ R
a reflection, then by the specific property of the space X recalled above, without loss
of generality we can assume that for every t P r0, 1s, Tt “ IdX `St, where St is strictly
singular. In particular, 0 R σpTt

Cq, σpTt
Cq contains only finitely many negative elements

and all of these elements are eigenvalues with finite multiplicity. Denote by nptq the
sum of the multiplicities of the negative eigenvalues of TC

t ; we show that the parity of
nptq is locally constant. This is enough to conclude, since this implies that this parity is
constant, contradicting the fact that np0q “ 0 and np1q “ 1.

Fix t P r0, 1s, and consider Γt a conjugation-invariant, rectifiable, simple closed curve
in C not intersecting σpTC

t q, such that, denoting by Vt the bounded connected component
of CzΓ, we have VtXσpT

C
t q “ p´8, 0qXσpT

C
t q, and p´2}TC

t }, 0q Ď Vt. This last condition
implies that for s close enough to t, all negative eigenvalues of TC

s are contained in Vt.
By 4. above, for s close enough to t, the sum of the multiplicities of the eigenvalues of
Ts

C that are in Vt is equal to nptq. By invariance of the spectrum under conjugation, the
sum of the multiplicities of the eigenvalues of Ts

C that are in Vtzp0,8q is even. Thus,
for s close enough to t, npsq and nptq have the same parity, as wanted.

After this article was submitted, the author managed to get a complete description
of the connected components of GLpXq, for X a real HI space, related to the existence
of complex structures on X and on its hyperplanes. In particular, there are real HI
spaces X for which GLpXq has exactly two connected components, but there is no real
HI space X for which the identity is homotopic to a reflection in GLpXq. These results
will be presented in a forthcoming publication.
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