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Abstract. We develop a method of representation of distributive (∨, 0, 1)-semilattices
as semilattices of finitely generated ideals of locally matricial algebras. We use

the method to reprove two representation results by G.M. Bergman and prove
a new one that every distributive (0, 1)-lattice is, as a semilattice, isomorphic to
the semilattice of all finitely generated ideals of a locally matricial algebra. We

apply this fact to solve the Γ-invariant problem.

Introduction

A lattice is strongly dense provided it possesses a cofinal continuous strictly
decreasing chain (shortly c.d.c.) in the poset of its nonzero elements. The di-
mension of a strongly dense lattice is the length of its shortest c.d.c. If a mod-
ular strongly dense lattice L has dimension ℵ0 then L possesses either a c.d.c.
(am| n < ω) such that an is complemented over am for every n < m (we say that
L is complementing) or a c.d.c. (am| n < ω) such that an is not complemented
over am for every n < m (then we say that the lattice L is narrow). For strongly
dense lattices of uncountable dimension κ is defined an invariant, called the Γ-
invariant, which is an element of B(κ), the Boolean algebra of all subsets of κ
modulo the filter generated by closed unbounded subsets. This invariant in some
sense measures the failure of the lattice to be relatively complemented [ET].

Let E denote the element of B(κ) represented by a subset E of an uncountable
regular cardinal κ. By [ET, Theorem 1.3], there exists a distributive strongly
dense lattice of dimension (and cardinality) κ whose Γ-invariant is E. Further-
more, the lattice IE of all nonzero ideals of LE is an algebraic distributive strongly
dense lattice of dimension κ with the Γ-invariant E.
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A right module over an associative ring is strongly uniform provided its sub-
module lattice is strongly dense. The dimension and the Γ-invariant of a strongly
uniform module are defined as the dimension and the Γ-invariant of its submod-
ule lattice. J. Trlifaj [T1] studied possible values of the dimensions and the Γ-
invariants of strongly uniform modules over rings of various types. In particular,
he proved that every strongly uniform module over a commutative Noetherian
ring is of finite or countable dimension and that in the latter case it is nar-
row [T1, Theorem 2.8]. Over commutative rings [T1, Theorem 2.10] or (non-
commutative) Noetherian rings [T1, Example 2.11] there are strongly uniform
modules of any uncountable dimension κ, but their only possible Γ-invariant is
κ. Finally, for every regular cardinal number κ, he found an example of a module
of dimension κ over a unit-regular ring. The Γ-invariants of these modules were
again κ and he asked about all the possible values of the Γ-invariants of strongly
uniform modules over non-right perfect rings, in particular, over rings which are
von Neumann regular [T1, Open problem 3]. This question will be referred as
the Γ-invariant problem.
Later on, P.C. Eklof and J. Trlifaj constructed a strongly dense module of a count-
able dimension which is complementing and more complex examples of strongly
uniform modules of an uncountable dimension over a locally semisimple algebra
(which is a unit-regular ring) [ET, Theorem 2.7] but the Γ-invariant problem
remained open [ET, Problem 2.3].
The Γ-invariant problem was our original motivation. We have tried to apply
the following idea [ET]: A ring R is a right module over the ring R⊗Z Rop (with
the multiplication given by t(r ⊗ s) = str) and submodules of this module cor-
respond to two-sided ideals of the ring R. In general, regularity is not preserved
by this tensor product construction but if R is a locally matricial algebra, then
the ring R ⊗Z Rop is a locally matricial algebra as well. Thus we focused on
representations of algebraic lattices as the lattices of two-sided ideals of locally
matricial algebras.
It is well know that the lattice of two-sided ideals of a von Neumann regular
ring is distributive. G.M. Bergman [Be] proved that every algebraic distributive
lattice either isomorphic to the lattice of lower subsets of a partially ordered set
or with at most countably many compact elements is isomorphic to the two-sided
ideal lattice of a locally matricial algebra. In contrast, F. Wehrung [W1, W2] con-
structed an algebraic distributive lattice with ℵ2 compact elements which cannot
be realized as the lattice of two-sided ideals of any von Neumann regular ring.
Further, he proved that if an algebraic distributive lattice has ℵ1 compact ele-
ments, then it can be realized as the lattice of two-sided ideals of a von Neumann
regular rings [W3]; however, he proved recently that the result fails for locally
matricial algebras [W4].
The main result of the paper is the realization of every algebraic distributive
lattice whose compact elements form a lattice as the lattice of two-sided ideals
of a locally matricial algebra [GW, Problem 1]. In particular, the lattice IE

has such a realization for every subset E of a regular cardinal κ, which leads
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to the solution of the Γ-invariant problem.
At the same time as we have achieved this result, S. Shelah and J. Trlifaj [ST]
constructed for every regular cardinal κ and every subset E of κ, a vector space
V over a given field k and a k-subalgebra R of the endomorphism ring of V such
that V , as an R-module, is strongly uniform of dimension κ and its Γ-invariant
equals E. However, the ring R is not von Neumann regular.
Now, let us outline the organization of the paper. In the first two sections we
develop tools for realization of distributive (∨, 0, 1)-semilattices as semilattices
of finitely generated ideals of unital locally matricial algebras. In Section 3 we
use these tools to reprove Bergman’s results. Section 4 is devoted to the proof
of the main result and Section 5 to its application to the solution of the Γ-invariant
problem.

Notation

The set of all natural numbers is denoted by ω. This notation is used also
for the first infinite ordinal. Given a set M , we denote by P(M) the set of all
subsets of M , and by [M ]<ω the set of all finite subsets of the set M . For a map
ϕ: M → N , we define a map P(ϕ): P(N) → P(M) by the correspondence
N ′ 7→ ϕ−1(N ′), where N ′ is a subset of N .
Let a be an element of a partially ordered set P . We use the notation

[a)P = {b ∈ P | a ≤ b},

(a]P = {b ∈ P | b ≤ a}

for the lower, upper subset of P generated by the element a, respectively. We
drop the subscript if the set P is understood.
Let C be a category. We denote by C(a, b) the set of all morphisms with
domain a and codomain b. By 1a, we denote the identity morphism of an object
a ∈ C. For all categories except the category c defined in Section 2, identity
morphisms correspond to identity maps.
Let k be a field. Recall that a family (Vi| i ∈ I) of subspaces of a k-vector
space V is independent if for every i ∈ I, the intersection of Vi with the sub-
space of V spanned by (Vj | j ∈ I r {i}) is the zero subspace. Given an inde-
pendent family (Vi| i ∈ I) of subspaces of a k-vector space V , we denote by⊕

i∈i Vi the subspace of V spanned by all the Vi, i ∈ I. Moreover, given a family
(fi: Vi → W | i ∈ I) of k-linear maps, we denote by

⊕
i∈I fi the unique k-linear

map f from
⊕

i∈i Vi to W such that f ↾ Vi = fi for every i ∈ I.

1. Distributive semilattices

Lattices of substructures, congruences, ideals, etc. of algebraic structures are
algebraic lattices [Gr, II.3. Definition 12]:

(i) Let L be a complete lattice and let a be an element of L. Then a is called
compact, if a ≤

∨
X, for some X ⊆ L, implies that a ≤ X1, for some

finite X1 ⊆ X.
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(ii) A complete lattice is called algebraic, if every element is the join of com-
pact elements.

The set of compact elements of a complete lattice L is closed under finite joins
(not under finite meets in general) and contains the zero of L. Thus it forms
a (∨, 0)-semilattice, which we denote by Lc.
The ideal lattice of every (∨, 0)-semilattice is algebraic. On the other hand,
every algebraic lattice L is isomorphic to Id(Lc), the lattice of all nonempty ideals
of the (∨, 0)-semilattice Lc [Gr, II.3. Theorem 13].
A semilattice S is called distributive if a ≤ b0 ∨ b1 (a, b0, b1 ∈ S) implies
the existence of a0, a1 ∈ S with a0 ≤ b0, a1 ≤ b1 and a = a0 ∨ a1 [Gr, page
131]. a (∨, 0)-semilattice S is distributive iff Id(S) (as a lattice) is distributive
[Gr, II.5. Lemma 1, (iii)].
A nonzero element a of a distributive semilattice (resp. lattice) L is join-
irreducible, if a = b ∨ c implies that either a = b or a = c for every b, c ∈ L.
We denote by J(L) the set of all join-irreducible elements of L, regarded as a
partially ordered set under the partial ordering of L [Gr, page 81]. A subset H
of a partially ordered set P is hereditary, if for every b ∈ H and every a ∈ P ,
a ≤ b implies that a ∈ H. We denote by H(P ) the set of all hereditary subsets
of P . Observe that H(P ) with intersection and union as meet and join forms
a distributive lattice. Every finite distributive semilattice (resp. lattice) L is
isomorphic to the semilattice (resp. lattice) H(J(L)) of all hereditary subsets of
J(L) partially ordered by set inclusion [Gr, II.1. Theorem 9].
A finite distributive (∨, 0, 1)-semilattice s is Boolean, if the order on the set

J(s) is trivial, that is, if s is isomorphic to the semilattice of all subsets of a finite
set.
We denote by

• s - the category of all finite distributive (∨, 0, 1)-semilattices (with (∨, 0, 1)-
preserving homomorphisms),

• b - the category of all finite Boolean semilattices (with (∨, 0, 1)-preserving
homomorphisms).

Given a finite distributive (∨, 0, 1)-semilattice s, we denote byBo(s) the Boolean
semilattice of all subsets of the set J(s) and for each f ∈ s(s1, s2), we define a
homomorphism Bo(f) ∈ b(Bo(s1), Bo(s2)) by the rule

Bo(f)(X) = {j ∈ J(s2)| j ≤ f(
∨

X)}, (X ∈ Bo(s)).

Observe that Bo preserves the composition of morphisms but not the identity
morphisms, indeed, Bo(1s) = 1Bo(s) iff s is Boolean.
Let s be a finite distributive (∨, 0, 1)-semilattice. We define a pair of semilattice
homomorphisms Ks: s → Bo(s) and Ls: Bo(s)→ s by

Ks(x) = {j ∈ J(s)| j ≤ x}, (x ∈ s)

and
Ls(X) =

∨
X, (X ∈ Bo(s)).



IDEAL LATTICES OF LOCALLY MATRICIAL ALGEBRAS 5

Observe that

(1.1) Ls ◦ Ks = 1s

and that for every homomorphism f ∈ s(s1, s2), the equalities

(1.2) Bo(f) ◦ Ks1 = Ks2 ◦ f,

(1.3) f ◦ Ls1 = Ls2 ◦ Bo(f)

and

(1.4) Ks2 ◦ f ◦ Ls1 = Bo(f)

hold.

Proposition 1.1. Let P be a upwards directed partially ordered set without max-
imal elements and let

〈sp, fp,q〉p≤q in P

be a direct system in s. If

〈S, fp〉p∈P
= lim−→〈sp, fp,q〉p≤q in P

,

then 〈
S, fp ◦ Lsp

〉
p∈P
= lim−→〈Bo(sp), Bo(fp,q)〉p<q in P

.

Proof. For all p ∈ P , put Lp = Lsp
, Kp = Ksp

, and gp = fp ◦ Lsp
. For each pair

p < q in P , set gp,q = Bo(fp,q).
For all p < q in P ,

gp = fp ◦ Lp = fq ◦ fp,q ◦ Lp = fq ◦ Lq ◦ gp,q = gq ◦ gp,q,

by (1.3). Let
〈
T, g′p

〉
p∈P
be such that for every p < q in P ,

g′p = g′q ◦ gp,q.

We show that there exists exactly one (∨, 0, 1)-semilattice homomorphism h: S →
T such that h ◦ gp = g′p for every p ∈ P .

Put f ′
p = g′p ◦ Kp for all p ∈ P . Then

f ′
q ◦ fp,q = g′q ◦ Kq ◦ fp,q = g′q ◦ gp,q ◦ Kp = g′p ◦ Kp = f ′

p
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for every p < q in P by (1.2). Then, since 〈S, fp〉p∈P
is a direct limit of the direct

system 〈sp, fp,q〉p≤q in P
, there exists a unique homomorphism h: S → T such

that
h ◦ fp = f ′

p

for every p ∈ P . It follows that for every p < q in P ,

h ◦ gp = h ◦ fp ◦ Lp = f ′
p ◦ Lp = g′p ◦ Kp ◦ Lp = g′q ◦ gp,q ◦ Kp ◦ Lp =

= g′q ◦ Kq ◦ fp,q ◦ Lp = g′q ◦ gp,q = g′p

(the 5th equality is due to (1.2), the 6th equality is due to (1.4)). Suppose that
h′: S → T is a (∨, 0, 1)-semilattice homomorphism satisfying h′ ◦ gp = g′p for
every p ∈ P . Then

h′ ◦ gp ◦ Kp = g′p ◦ Kp, (p ∈ P ),

hence
h′ ◦ fp ◦ Lp ◦ Kp = f ′

p, (p ∈ P ),

and so, by (1.1),
h′ ◦ fp = f ′

p,

for every p ∈ P . It follows that h = h′. ¤

P. Pudlák [Pu] proved that every distributive (∨, 0)-semilattice is the directed
union of all its finite distributive (∨, 0)-subsemilattices. Consequently, every
distributive (∨, 0, 1)-semilattice is a direct limit of a direct system S of finite
distributive semilattices and (∨, 0, 1)-preserving embeddings. Furthermore, we
can assume that S is indexed by an upwards directed partially ordered set with-
out maximal elements. Then, as a corollary of Proposition 1.1, we obtain the
following result of K.R. Goodearl and F. Wehrung [GW, Theorem 6.6].

Corollary 1.2. Every distributive (∨, 0, 1)-semilattice is a direct limit of Boolean
semilattices (and (∨, 0, 1)-preserving homomorphisms).

2. The category c

All rings are associative with a unit element, all ring homomorphisms are
supposed to preserve the unit. For a ring R, we denote by Id(R) the lattice
of two-sided ideals of R and by Idc(R) the semilattice of compact elements of
the lattice Id(R), that is, the semilattice of finitely generated two-sided ideals of
R. Notice that Idc(R) is a (∨, 0, 1)-semilattice.
Given a ring homomorphism ϕ: R → S, we define a map Idc(ϕ): Idc(R) →
Idc(S) by the correspondence

(2.1) I 7→ Sϕ(I)S.

The map Idc(ϕ) is a (∨, 0, 1)-semilattice homomorphism, and it is straightforward
to verify that Idc is a direct limits preserving functor from the category of rings
to the category of (∨, 0, 1)-semilattices.
The following example shows that it is not possible to define, in a similar way,
a functor Id from the category of rings to the category of all algebraic lattices.
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Example 2.1. Let k be a field, let R = k × k and S = k ×M2(k) be k-algebras.
Put e1 = (1, 0), e2 = (0, 1), and

f =
(
1,

(
0 0

0 0

))
, g1 =

(
0,

(
1 0

0 0

))
, g2 =

(
0,

(
0 0

0 1

))
.

Denote by I1, I2 the two-sided ideals of R generated by primitive idempotents e1,
e2, respectively, and by J the two-sided ideal of S generated by g2. Let ϕ: R → S
be the ring homomorphism defined on the generators e1, e2 of R by ϕ(e1) = f+g1,
ϕ(e2) = g2. Then correspondence (2.1) assigns to the ideal I1 the whole ring S
and the ideal I2 is mapped to J . Since I1 ∩ I2 = 0, while S ∩ J = J , the map Idc

does not preserves finite meets.

Let k be a field. A matricial k-algebra R is an k-algebra of the form

Mp(1)(k)× . . . × Mp(n)(k)

for some natural numbers p(1), . . . , p(n) [Go, page 217]. The semilattice Idc(R)
of all finitely generated two-sided ideals of the matricial algebra R is isomorphic
to the Boolean semilattice of all subsets of the set {1, . . . , n}. We fix a field k
and denote bym the category of all matricial k-algebras. Recall that a k-algebra
is locally matricial provided it is a direct limit of matricial k-algebras.
In this section we shall define a new category c and a pair of functors A: c→m
and Λ: c→ s such that there is a natural isomorphism η: IdcA → Λ.

Definition. An object B of the category c consists of a finite set I and a family(
Bi| i ∈ I

)
of nonempty pairwise disjoint finite sets.

Let B1 =
(
Bi
1| i ∈ I1

)
, B2 =

(
Bi
2| j ∈ I2

)
be objects of the category c. A pre-

morphism B1 → B2 is a pair (C, h), where C =
(
Ci,j | i ∈ I1, j ∈ I2

)
is a family

of (possibly empty) finite sets and h =
(
hj | j ∈ I2

)
is a family of bijections

hj :
⋃

i∈I1

(
Ci,j × Bi

1

) ≃
−→ Bj

2.

We denote by c′(B1, B2) the collection of all premorphisms B1 → B2.

We say that premorphisms (C, h), (C̃, h̃) ∈ c′(B1, B2) are equivalent (we write

(C, h) ∼ (C̃, h̃)) if there is a collection
(
gi,j : Ci,j → C̃i,j | i ∈ I1, j ∈ I2

)
of maps

such that for every i ∈ I1, j ∈ I2, and for every c ∈ Ci,j , b ∈ Bi,

(2.2) hj(c, b) = h̃j
(
gi,j(c), b

)
.

Observe that the maps gi,j , i ∈ I1, j ∈ I2 satisfying (2.2) are necessarily bijec-
tions. The morphisms in c are the equivalence classes with respect to the equiv-
alence relation ∼, that is

c(B1, B2) = c
′(B1, B2)/ ∼ .
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Denote by [C, h], or sometimes [(C, h)], the equivalence class represented by
the premorphism (C, h). We say that [C, h] is a morphism from B1 to B2.

Now we shall define the composition of morphisms in c. First we describe
how the premorphisms are composed. For objects B1 =

(
Bi
1| i ∈ I1

)
, B2 =(

Bj
2| j ∈ I2

)
, B3 =

(
Bk
3 | k ∈ I3

)
of the category c and premorphisms (C1, h1) ∈

c′ (B1, B2), (C2, h2) ∈ c
′ (B2, B3), the composition (C, h) = (C2, h2) ◦ (C1, h1)

consists of the family C =
(
Ci,k| i ∈ I1, k ∈ I3

)
of sets, resp. a family h =(

hk| k ∈ I3
)
of maps defined by

Ci,k =
⋃

j∈I2

(
Cj,k
2 × Ci,j

1

)

for every i ∈ I1, k ∈ I3, resp.

hk ((c2, c1), b) = hk
2

(
c2, h

j
1 (c1, b)

)

for every b ∈ Bi
1, c1 ∈ Ci,j

1 , c2 ∈ Cj,k
2 , where i ∈ I1, j ∈ I2, and k ∈ I3.

Lemma 2.2. Let B1 =
(
Bi
1| i ∈ I1

)
, B2 =

(
Bj
2| j ∈ I2

)
, and B3 =

(
Bk
3 | k ∈ I3

)

be objects of the category c. Let (C1, h1), (C̃1, h̃1) ∈ c
′(B1, B2) and (C2, h2),

(C̃2, h̃2) ∈ c
′(B2, B3). If (C1, h1) ∼ (C̃1, h̃1) and (C2, h2) ∼ (C̃2, h̃2), then

(C2, h2) ◦ (C1, h1) ∼ (C̃2, h̃2) ◦ (C̃1, h̃1).

Proof. Since (C1, h1) ∼ (C̃1, h̃1), there are maps

gi,j
1 : C

i,j
1 → C̃i,j

1 , (i ∈ I1, j ∈ I2)

such that for every b ∈ Bi
1 and c ∈ Ci,j

1 ,

hj
1(c, b) = h̃j

1

(
gi,j
1 (c), b

)
.

Similarly, since (C2, h2) ∼ (C̃2, h̃2), there are maps

gj,k
2 : C

j,k
2 → C̃j,k

2 , (j ∈ I2, k ∈ I3)

such that for every b ∈ Bj
2 and c ∈ Cj,k

2 ,

hk
2 (c, b) = h̃k

2

(
gj,k
2 (c), b

)
.
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We put

gi,k =
⋃

j∈I2

(
gj,k
2 × gi,j

1

)
, (i ∈ I1, k ∈ I3) ,

and we denote by (C, h), resp. (C̃, h̃) the composition (C2, h2) ◦ (C1, h1), resp.

(C̃2, h̃2) ◦ (C̃1, h̃1). Then for every b ∈ Bi
1, c1 ∈ Ci,j

1 , and c2 ∈ Cj,k
2 , where i ∈ I1,

j ∈ I2, and k ∈ I3,

hk ((c2, c1) , b) = hk
2

(
c2, h

j
1(c1, b)

)
= h̃k

2

(
gj,k
2 (c2), h̃

j
1

(
gi,j
1 (c1), b

))
=

= h̃k
((

gj,k
2 (c2), g

i,j
1 (c1)

)
, b

)
= h̃k

(
gi,k(c2, c1), b

)
.

¤

Let (C2, h2), (C1, h1) be premorphisms as above. Lemma 2.2 enables us to de-
fine

[(C2, h2) ◦ (C1, h1)] = [(C2, h2)] ◦ [(C1, h1)].

It remains to prove that the composition is associative and that every object of
c possesses an identity morphism.

Lemma 2.3. The composition of morphisms is associative, that is, let Bn =(
Bi

n| i ∈ In

)
, n = 1, . . . , 4, be objects of the category c and let [Cn, hn] ∈ c (Bn, Bn+1)

for n = 1, 2, 3, then

[C3, h3] ◦
(
[C2, h2] ◦ [C1, h1]

)
=

(
[C3, h3] ◦ [C2, h2]

)
◦ [C1, h1].

Proof. Put

(C, h) = (C3, h3) ◦
(
(C2, h2) ◦ (C1, h1)

)

and
(C̃, h̃) =

(
(C3, h3) ◦ (C2, h2)

)
◦ (C1, h1).

We prove that

(2.3) (C, h) ∼ (C̃, h̃).

It follows from the definition that for every i ∈ I1, and l ∈ I4,

Ci,l =
⋃

k∈I3


Ck,l

3 ×




⋃

j∈I2

(
Cj,k
2 × Ci,j

1

)




 =

⋃

j∈I2

⋃

k∈I3

(
Ck,l
3 ×

(
Cj,k
2 × Ci,j

1

))
,

while

C̃i,l =
⋃

j∈I2

((
⋃

k∈I3

(
Ck,l
3 × Cj,k

2

))
× Ci,j

1

)
=

⋃

j∈I2

⋃

k∈I3

((
Ck,l
3 × Cj,k

2

)
× Ci,j

1

)
.
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It is straightforward to verify that for every b ∈ Bi
1, c1 ∈ Ci,j

1 , c2 ∈ Cj,k
2 , and

c3 ∈ Ck,l
3 , where i ∈ I1, j ∈ I2, k ∈ I3, and l ∈ I4, the equality

(2.4) hl ((c3, (c2, c1)) , b) = hl
3

(
c3, h

k
2

(
c2, h

j
1 (c1, b)

))
= h̃l (((c3, c2) , c1) , b)

holds. Finally, for all i ∈ I1 and l ∈ I4, define a bijection gi,l: Ci,l → C̃i,l by
the correspondence (c3, (c2, c1)) 7→ ((c3, c2), c1). Then, due to (2.4), for every
b ∈ Bi

1 and every c ∈ Ci,l,

hl(c, b) = h̃l(gi,l(c), b).

This proves (2.3). ¤

Given an object B =
(
Bi| i ∈ I

)
in the category c, we put

Ci,j =

{
∅, if i 6= j

{i}, if i = j

for every i, j ∈ I and we define maps hj , j ∈ I, from
⋃

i∈I

(
Ci,j × Bi

)
= {j}×Bj

to Bj by the correspondence (j, b) 7→ b.

Lemma 2.4. The map (C, h) is an identity morphism of the object B.

Proof. Let B0 = (B
i
0| i ∈ I0) be an object in the category c and let (C0, h0) ∈

c′(B0, B). Denote by (C̃0, h̃0) the composition (C, h) ◦ (C0, h0). We prove that

(2.5) (C̃0, h̃0) ∼ (C0, h0).

By the definition, for every i ∈ I0, and j ∈ I,

C̃i,j
0 = Cj,j × Ci,j

0 = {j} × Ci,j
0 ,

and for every b ∈ Bi
0 and c ∈ Ci,j ,

(2.6) h̃j
0((j, c), b) = hj

(
j, hj

0(c, b)
)
= hj

0(c, b).

For all i ∈ I0, j ∈ I, define a map gi,j : Ci,j
0 → C̃i,j

0 by the correspondence

c 7→ (j, c). It follows from (2.6) that for every b ∈ Bi
0 and c ∈ Ci,j

0 ,

hj
0(c, b) = h̃j

0

(
gi,j(c), b

)
.

This proves (2.5).
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On the other hand, let B1 = (B
j
1| j ∈ I1) be an object of the category c and

let (C1, h1) ∈ c
′(B,B1). Denote by (C̃1, h̃1) the composition (C1, h1) ◦ (C, h).

We prove that

(2.7) (C1, h1) ∼ (C̃1, h̃1).

Let i ∈ I, and j ∈ I1. By the definition,

C̃i,j
1 = Ci,j

1 × Ci,i = Ci,j
1 × {i},

and for every b ∈ Bi, c ∈ Ci,j ,

(2.8) h̃j
1((c, i), b) = hj

1(c, h
i(i, b)) = hj

1(c, b).

For all c ∈ Ci,j , define gi,j(c) = (c, i). Then, by (2.8), for every b ∈ Bi and

c ∈ Ci,j
1 ,

hj
1(c, b) = h̃j

1(g
i,j(c), b).

This proves (2.7). ¤

Now we know that c is a category. The next step is to define a functor,
which we shall denote by A, from the category c to the category m of matricial
algebras. Let B = (Bi| i ∈ I) be an object of the category c. For all i ∈ I,
denote by V (Bi) the vector space with basis Bi, and let V (B) =

⊕
i∈I V (Bi) be

the vector space with basis B (note that since the sets Bi, i ∈ I, are disjoint,
the family (V (Bi)| i ∈ I) of vector spaces is independent). Define

A(B) = {α ∈ End(V (B))| ∀i ∈ I: α
(
V (Bi)

)
⊆ V (Bi)}.

For all α ∈ End(V (B)), denote by αi the restriction α ↾ V
(
Bi

)
. Observe that

A(B) is a matricial algebra isomorphic to
∏

i∈I End(V
(
Bi

)
).

Let (C, h) : B1 → B2 be a premorphism in the category c. For all i ∈ I1,
j ∈ I2, denote by V

(
Ci,j

)
the vector space with basis Ci,j . For every j ∈ I2,

the bijection

hj :
⋃

i∈I1

(
Ci,j × Bi

1

) ≃
−→ Bj

2

induces an isomorphism

φj :
⊕

i∈I1

(
V (Ci,j)⊗ V (Bi

1)
) ≃
−→ V (Bj

2).

For all α ∈ A(B1), set

(2.9) A(C, h)(α) =
⊕

j∈I2

φj ◦

(
⊕

i∈I1

(
1V (Ci,j) ⊗ αi

)
)

◦ (φj)−1.

Observe that A(C, h)(α)j is an endomorphism of the vector space V (Bj
2) for every

j ∈ I2, and so A(C, h)(α) ∈ A (B2).
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Lemma 2.5. Let B1, B2 be objects of the category c and let (C, h) ∈ c(B1, B2).
Then A(C, h): A(B1)→ A(B2) is a homomorphism of unitary k-algebras.

Proof. It suffices to verify that for every α, β ∈ A(B1) and for every element t
of the field k,

A(C, h)(α + β) = A(C, h)(α) +A(C, h)(β),

A(C, h)(α ◦ β) = A(C, h)(α) ◦ A(C, h)(β),

A(C, h)(tα) = tA(C, h)(α),

and

A(C, h)(1V (B1)) = 1V (B2).

But all these equalities are clear from the definition. ¤

Lemma 2.6. Let B1, B2 be objects of the category c and let (C, h), (C̃, h̃) ∈

c′(B1, B2). If (C, h) ∼ (C̃, h̃), then A(C, h) = A(C̃, h̃).

Proof. Since (C, h) ∼ (C̃, h̃), there are bijections gi,j : Ci,j ≃
−→ C̃i,j such that for

every b ∈ Bi
1, c ∈ Ci,j ,

h̃j
(
gi,j(c), b

)
= hj(c, b), (i ∈ I1, j ∈ I2).

The bijections gi,j induce isomorphisms γi,j : V (Ci,j)→ V (C̃i,j) satisfying

φ̃j ◦

(
⊕

i∈I1

(
γi,j ⊗ 1

V (Bi
1)

))
= φj ,

and (
⊕

i∈I1

(
γi,j−1 ⊗ 1

V (Bi
1)

))
◦ (φ̃j)−1 = (φj)−1

for every j ∈ I2. Substituting in (2.9), a straightforward computation leads to

the equality A(C, h)(α) = A(C̃, h̃)(α) for every α ∈ A(B1). ¤

We define A ([C, h]) = A (C, h) for every morphism [C, h] ∈ c (B1, B2). In order
to prove that A is a functor we have to verify that it preserves both the compo-
sition of morphisms and the identity morphisms.

Lemma 2.7. The functor A preserves the composition of morphisms. In par-
ticular, let Bn =

(
Bi

n| i ∈ In

)
, n = 1, 2, 3, be objects of the category c and let

(C1, h1) ∈ c
′(B1, B2), (C2, h2) ∈ c

′(B2, B3) be premorphisms, then

A ((C2, h2) ◦ (C1, h1)) = A (C2, h2) ◦ A (C1, h1).
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Proof. Denote by (C, h) the composition (C2, h2)◦(C1, h1). Recall that for every
i ∈ I1, k ∈ I3,

Ci,k =
⋃

j∈I2

(
Cj,k
2 × Ci,j

1

)

and for every b ∈ Bi
1, c1 ∈ Ci,j

1 , and c2 ∈ Cj,k
2 , where i ∈ I1, j ∈ I2 and k ∈ I3,

hk ((c2, c1) , b) = hk
2

(
c2, h

j
1 (c1, b)

)
.

It follows that

φk ((c2 ⊗ c1)⊗ b) = φk
2

(
c2 ⊗ φj

1 (c1 ⊗ b)
)

,

where φj
1, φ

k
2 , φ

k are the vector space isomorphisms induced by the maps hj
1, h

k
2 ,

hk, respectively. Thus, for every k ∈ I3,

φk = φk
2 ◦




⊕

j∈I2

(
1

V (Cj,k
2 )

⊗ φj
1

)

 ◦ θk,

where θk is the “corrective” homomorphism induced by the correspondence

(c2 ⊗ c1)⊗ b 7→ c2 ⊗ (c1 ⊗ b)

(here again b ∈ Bi
1, c1 ∈ Ci,j

1 , c2 ∈ Cj,k
2 ).

Let k ∈ I3. Put ψk
1 =

(⊕
j∈I2

(
1

V (Cj,k
2 )

⊗ φj
1

))
◦ θk, and compute that

for every α ∈ A(B1),

(2.10) ψk
1 ◦

(
⊕

i∈I1

(
1V (Ci,k) ⊗ αi

)
)

◦ ψk
1

−1
=

⊕

j∈I2

(
1

V (Cj,k
2 )

⊗ A(C1, h1)(α)
j
)

.

Composing the morphisms in equality (2.10) with φk
2 , resp. (φ

k
2)

−1 from the left,
resp. right hand side, we get that

A(C, h)(α)k = A(C2, h2) (A(C1, h1)(α))
k
.

¤

Lemma 2.8. Let B =
(
Bi| i ∈ I

)
be an object of the category c. If [C, h] is

the identity morphism on B, then A(C, h) = 1A(B).

Proof. Let B1 =
(
BJ
1 | j ∈ I1

)
be an object of the category c and (C1, h1) ∈

c′(B,B1) a premorphism such that Ci,j
1 6= ∅ for every i ∈ I, j ∈ I1. Then

the homomorphism A(C1, h1) is one-to-one, and by Lemmas 2.4, 2.6 and 2.7,

A(C1, h1) ◦ A(C, h) = A
(
(C1, h1) ◦ (C, h)

)
= A(C1, h1).
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It follows that A(C, h) = 1A(B). ¤

We define a functor Λ : c → b as follows: For each object B =
(
Bi| i ∈ I

)
,

we define Λ (B) to be the power-set semilattice P(I) of the set I. Given a pre-
morphism (C, h) ∈ c′(B1, B2), we define a (∨, 0, 1)-semilattice homomorphism
Λ (C, h): Λ (B1)→ Λ (B2) by the rule

J 7→

{
j ∈ I2|

⋃

i∈J

Ci,j 6= ∅

}
, (J ∈ P(I1)).

It is clear that (C, h) ∼ (C̃, h̃) implies that Λ (C, h) = Λ (C̃, h̃). Thus we are
entitled to define Λ ([C, h]) = Λ (C, h).
Any two-sided ideal of a matricial algebra is principal. For every α ∈ A(B),
we denote by 〈α 〉 the two-sided ideal generated by the homomorphism α. Then
the rule

〈α 〉 7→ {i ∈ I| αi 6= 0}

defines an isomorphism ηB: Id
cA (B)→ Λ (B).

Lemma 2.9. The isomorphism η: IdcA → Λ is natural.

Proof. We prove that for every (C, h) ∈ c′(B1, B2), the diagram

IdcA(B1)
IdcA(C,h)
−−−−−−→ IdcA(B2)

ηB1

y
yηB2

Λ (B1) −−−−−→
Λ (C,h)

Λ (B2)

commutes. Let j ∈ I2 and α ∈ A(B1). Then

Λ(C, h) ◦ ηB1(〈α 〉) = {j ∈ I2| ∃i ∈ I1: α
i 6= 0 & Ci,j 6= ∅}.

Set β = A(C, h)(α ). Then

ηB2 ◦ Id
cA(C, h)(〈α 〉) = ηB2(〈β 〉) = {j ∈ I2| βj 6= 0}

and, by the definition, for every j ∈ I2,

βj = φj ◦

(
⊕

i∈I1

(
1V (Ci,j) ⊗ αi

)
)

◦ φj−1,

where φj is the isomorphism induced by the bijection hj . Then βj 6= 0 iff
⊕

i∈I1

(
1V (Ci,j) ⊗ αi

)
6= 0

iff there is i ∈ I1 such that αi 6= 0 and Ci,j 6= ∅. ¤
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Definition. Let f : s1 → s2 be a homomorphism in s. Let B1, B2 be objects
of the category B and let εi: Ii → J(si), i = 1, 2, be isomorphisms of posets. We
say that a morphism [C, h] ∈ c(B1, B2) is f-induced with respect to ε1, ε2 if
the diagram

Bo(s1)
Bo(f)
−−−−→ Bo(s2)

P(ε1)

y
yP(ε2)

Λ(B1)
Λ([C,h])
−−−−−→ Λ(B2)

commutes.

Observe that the morphism [C, h] is f -induced with respect to ε1, ε2 if and
only if Ci,j 6= 0 iff f(ε1(i)) ≥ ε2(j) for every i ∈ I1, j ∈ I2.

Proposition 2.10. Let P be a partially ordered upwards directed set without
maximal elements. Let

〈sp, fp,q〉p≤q in P

be a direct system in s. Let

〈Bp, [Cp,q, hp,q]〉p<q in P

be a direct system in the category c and (εp: Ip → J(sp)| p ∈ P ) a family of bi-
jections such that [Cp,q, hp,q] is a fp,q-induced morphism with respect to εp, εq

for every p < q in P . If R is a direct limit of the diagram

〈A(Bp), A([Cp,q, hp,q))〉p<q in P
,

then Idc(R) is isomorphic to lim−→〈sp, fp,q〉p≤q in P
.

Proof. This follows from Proposition 1.1 and the fact that the functor Idc com-
mutes with direct limits. ¤

3. Bergman’s theorems

The purpose of this section is to illustrate the effectiveness of the tools de-
veloped in Sections 1 and 2. The results proved here are not going to be used
later in the paper. We reprove the two main results from the unpublished notes
by G.M. Bergman [Be]. Different proofs of the first of them were published
in [GW]. It states that every countable distributive (∨, 0, 1)-semilattice is isomor-
phic to the semilattice of finitely generated two-sided ideals of a locally matricial
algebra. As far as I know, the second theorem has never been published. It is
the following assertion: Every strongly distributive (∨, 0, 1)-semilattice is isomor-
phic to the semilattice of finitely generated ideals of a locally matricial algebra.
a (∨, 0)-semilattice is strongly distributive provided every element is a join
of join irreducible elements. The ideal lattices of strongly distributive (∨, 0)-
semilattices are characterized as the lattices of all hereditary subsets of partially
ordered sets [Be]. A strongly distributive (∨, 0)-semilattice has a unit element if
and only if the corresponding partially ordered set P has finitely many maximal
elements and every element of P is under one of them [Be].
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Theorem 3.1. Every countable distributive (∨, 0, 1)-semilattice is isomorphic to
the semilattice of finitely generated two-sided ideals of a unital locally matricial
algebra.

Proof. Let S be a countable distributive (∨, 0, 1)-semilattice. By a theorem
of P. Pudlák, the semilattice S is the directed union of its finite distributive
(∨, 0, 1)-subsemilattices [Pu]. Since S is countable, there is a countable sequence

s0 ⊆ s1 ⊆ s2 ⊆ . . .

of finite (∨, 0, 1)-semilattices such that S =
⋃

i∈ω si. Put In = J(sn) and for all
n ≤ m in ω, denote by fn,m the inclusion map sn → sm.
For each n ∈ ω and i ∈ In, put

Bi
n = {(i0, . . . , in) ∈ I0 × · · · × In| i0 ≥ · · · ≥ in = i}.

Given n < m in ω, set

Ci,j
n,m = {(in, . . . , im) ∈ In×· · ·×Im| i = in ≥ · · · ≥ im = j} (i ∈ In, j ∈ Im)

and for every j ∈ Im, define an isomorphism hj
n,m:

⋃
i∈In

(
Ci,j

n,m × Bi
n

)
→ Bj

m

by the rule

((in, . . . , im), (i0, . . . , in)) 7→ (i0, . . . , im).

We verify that

(i) for every n ∈ ω, for every i ∈ In, B
i
n 6= 0,

(ii) if n < m, then for every i ∈ In, j ∈ Im, C
i,j
n,m 6= 0 iff i ≥ j.

Ad (i): Let n ∈ ω. It suffices to prove that for every i ∈ In+1 there exists j ≥ i
in In. Since

∨
In = 1 ≥ i and i is join irreducible, there is j ∈ In with j ≥ i and

we are done.
Ad (ii): Let n < m in ω. Let i ∈ In and j ∈ Im satisfy i ≥ j. Then there
exist k0, . . . , kt−1 ∈ In+1 with i = k0 ∨ · · · ∨ kt−1, and since i ≥ j and j is
join irreducible, ks ≥ j for some s < t. Thus i ≥ k ≥ j for some k ∈ In+1. By
induction we prove that if i ≥ j, then Ci,j

n,m 6= 0. The converse implication is
clear from the definition.
Having verified (i), it is clear that

〈Bn, [Cn,m, hn,m]〉n<m in ω

is a direct system in c. It follows from (ii) that for every n < m in ω, Λ([Cn,m, hn,m]) =
Bo(fn,m), that is, that [Cn,m, hn,m] is an fn,m-induced morphism with respect
to identity maps. Now we apply Proposition 2.10. ¤
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Theorem 3.2. Every strongly distributive (∨, 0, 1)-semilattice is isomorphic to
the semilattice of finitely generated ideals of a unital locally matricial algebra.

Proof. Let S be a strongly distributive (∨, 0)-semilattice. Then there is a par-
tially ordered set Q such that S is isomorphic to the semilattice of compact
elements of the lattice H(Q), that is,

S ≃ {(F ]| F ∈ [Q]<ω}.

The semilattice S has a greatest element if and only if Q = (M ] for some finite
subset M of Q (i.e., if for every q ∈ Q there is m ∈ M with q ≤ m). Put

K = {F ∈ [Q]<ω| M ⊆ F}

and P = K ×ω. Define an order relation on the set P by (I, n) < (J,m) if I ⊆ J
and n < m. Observe that P is upwards directed without maximal elements.
Given a pair p = (Ip, n) ≤ q = (Iq,m) in P , let fp,q: H(Ip) → H(Iq) de-
note the semilattice homomorphism given by fp,q((i]Ip

) = (i]Iq
for every i ∈ Ip.

The homomorphism fp,q preserves 0 and 1 and

S = lim−→〈H(Ip), fp,q〉p≤q in P
.

Let p = (Ip, n) ∈ P . For each i ∈ Ip, let Bi
p be the set of pairs (n, i), where

n = (n1, . . . , ns) is a sequence of natural numbers not bigger than n and i =
(i0, . . . , is) is a sequence of elements of Ip such that i0 ∈ M and i0 > · · · > is = i
(s is a natural number). It is clear that the set Bi

p is nonempty for every i ∈ Ip.
Let p = (Ip, n) < q = (Iq,m) be a pair of elements of P . Given i ∈ Ip and

j ∈ Iq, we define Ci,j
p,q to be the set of pairs (m, j) such that m = (m1, . . . ,mt) is

a sequence of natural numbers not bigger thanm and j = (j0, . . . , jt) is a sequence
of elements of Iq satisfying i = j0 > · · · > jt = j (t is a natural number) and if
i > j, then either m1 > n or j1 /∈ Ip.
Given pairs (n′, i′) ∈ Bi

p, where n′ = (n1, . . . , ns) and i′ = (i0, . . . , is), and

(n′′, i′′) ∈ Ci,j
p,q, where n′′ = (ns+1, . . . , nt) and i′′ = (is, . . . , it), we define

hj
p,q((n

′′, i′′), (n′, i′)) = (n, i),

where n = (n1, . . . , nt) and i = (i0, . . . , it). It is readily seen that (n, i) ∈ Bj
q ,

and so we have defined a map hj
p,q:

⋃
i∈Ip

(
Ci,j

p,q × Bi
p

)
→ Bj

q . On the other

hand, let (n, i), where n = (n1, . . . , nt) and i = (i0, . . . , it), be an element of B
j
q .

Denote by s the maximal number from the set {0, . . . , t} such that is ∈ Ip and
the pair (n′, i′), where n′ = (n1, . . . , ns) and i′ = (i0, . . . , is), belongs to Bis

p .

If s = t, put n′′ = () and i′′ = (it), while if s < t, define n′′ = (ns+1, . . . , nt)
and i′′ = (is, . . . , it). It follows from the choice of s that if s < t, then either
ns+1 > n or is+1 /∈ Ip. Hence (n

′′, i′′) ∈ Ci,j
p,q and the correspondence (n, i) 7→
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((n′′, i′′), (n′, i′)) defines a map h′j
p,q: Bj

q →
⋃

i∈Ip

(
Ci,j

p,q × Bi
p

)
. The map h′j

p,q

is clearly one-to-one and the composition h′j
p,q ◦ hj

p,q equals the identity map

on the set
⋃

i∈Ip

(
Ci,j

p,q × Bi
p

)
. It follows that the map hj

p,q is a bijection.

Let p = (Ip, n) < q = (Iq,m) < r = (Ir, l) be elements of P , let i ∈ Ip, j ∈ Iq

and k ∈ Ir. For all (m
′, j′) ∈ Ci,j

p,q, where m′ = (m1, . . . , ns) and j′ = (j0, . . . , js),

and (m′′, j′′) ∈ Cj,k
q,r , where m′′ = (ms+1, . . . ,mt), j

′′ = (js, . . . , jt), define

gi,k
p,q,r((m

′′, j′′), (m′, j′)) = (m, j),

where m = (m1, . . . ,mt) and j = (j0, . . . , jt). Notice that gi,k
p,q,r is a map from⋃

j∈Iq

(
Cj,k

q,r × Ci,j
p,q

)
to Ci,k

p,r. Let i ∈ Ip, j ∈ Iq and k ∈ Ir satisfy i ≥ j ≥ k. Then

for every natural numbers s ≤ t ≤ u, and (n, i) ∈ Bi
p, where n = (n1, . . . , ns),

i = (i0, . . . , is), (m
′, j′) ∈ Ci,j

p,q, where m′ = (ms+1, . . . ,mt), j
′ = (js, . . . , jt), and

(m′′, j′′) ∈ Cj,k
q,r , where m′′ = (mt+1, . . . ,mu), j

′′ = (jt, . . . , ju),

hk
p,r

(
gi,k

p,q,r

(
(m′′, j′′), (m′, j′)

)
, (n, i)

)
= (m, j) = hk

q,r

(
(m′′, j′′), hj

p,q

(
(m′, j′), (n, i)

))
,

where m = (n1, . . . , ns,ms+1, . . . ,mu), and j = (i0, . . . , is, js+1, . . . , jn). (Note
that is = j = js.) It follows that

〈Bp, [Cp,q, hp,q]〉p<q in P

forms a direct system in the category c. For every p ∈ P define a bijection
εp: Ip → J(H(Ip)) by i 7→ (i]Ip

. It is clear that given p = (In, n) < q = (Iq,m)
in P , for every i ∈ Ip, j ∈ Iq, the inequality i ≥ j (i.e., (i]Iq

⊇ (j]Iq
) holds iff

Cj,i
p,q 6= ∅, whence the morphism [Cp,q, hp,q] is fp,q-induced with respect to εp, εq.
Proposition 2.10 concludes the proof. ¤

4. Representation of distributive lattices

LetM be a finite set. Denote by TO(M) the set of all total orders on the setM .
For all α ∈ TO(M), denote by H(α) the set of all hereditary subsets (including
the empty set) of M with respect to the order α.
Let N be a subset of a finite set M and let α ∈ TO(M). Denote by α ↾ N the
restriction of α to the set N . For all α: a0 < · · · < an and β: b0 < · · · < bn ∈
TO(M) define α ∼N β if ai 6= bi implies ai, bi ∈ N for every i ∈ {0, . . . , n}. It
is clear that ∼N is an equivalence relation on the set TO(M), and we denote by
[α]N the equivalence class of the linear order α.

Lemma 4.1. Let N be a subset of a finite set M . For every α ∈ TO(N) and
γ ∈ TO(M), there exists a unique β ∈ TO(M) satisfying β ∼N γ and β ↾ N = α.

Proof. For β, γ ∈ N , β ∼N γ iff there exists a permutation σ of M fixing
every element of M r N such that a <β b iff σ(a) <γ σ(b), for all a, b ∈ M .
The conclusion easily follows. ¤
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Let Q be a subset of the set P(M). Denote by C(Q) the set

{ϕ: Q → P(M)| ∀N ∈ Q: ϕ(N) ⊆ N}.

For every ϕ ∈ C(Q), put

∪ϕ =
⋃

{ϕ(N)| N ∈ Q}.

Definition. Let L be a finite distributive lattice. For all a ∈ J(L), let Ba
L be

the set of all pairs (α,ϕ), where α ∈ TO([a)L), ϕ ∈ C(P(L)), and the following
properties are satisfied:

(i) [a)L ⊇ ∪ϕ,
(ii) for all a′ > a in J(L), if [a′)L ∈ H(α), then [a′)L + ∪ϕ.

Denote by BL the family (B
a
L | a ∈ J(L)); it is an object of b associated to the fi-

nite distributive lattice L.
Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2. Let a ∈ J(L1)

and b ∈ J(L2). If b 6≤ a, then we put Ca,b
L1,L2

= ∅. Suppose that b ≤ a, that

is, [b)L2 ⊇ [a)L1 . Then we define Ca,b
L1,L2

to be the set of all pairs ([β′][a)L1 , ψ
′),

where β′ ∈ TO([b)L2), ψ
′ ∈ C(P(L2)r P(L1)), and the following properties are

satisfied:

(iii) [a)L1 ∈ H (β′ ↾ ([b)L2 ∩ L1)),
(iv) [b)L2 ⊇ ∪ψ′,
(v) for all b′ ∈ J(L2) with b < b′ ≤ a, if [b′)L2 ∈ H(β′), then [b′)L2 + ∪ψ′.

(Observe that if β ∼[a)L1 β′, then [a)L1 ∈ H (β′ ↾ ([b)L2 ∩ L1)) iff [a)L1 ∈

H (β ↾ ([b)L2 ∩ L1)) and for every b′ ∈ J(L2) with b < b′ ≤ a, [b′)L2 ∈ H(β)
iff [b′)L2 ∈ H(β′); hence the definition is correct.) The following lemma is well-
known [MMT, Exercises 2.63.10].

Lemma 4.2. Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2. Then
for every b ∈ J(L2), [b)L2 ∩ L1 = [c)L1 for some c ∈ J(L1).

Lemma 4.3. Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2. Let
b ∈ J(L2). The rule

(4.2)
((
[β′][a)L1 , ψ

′
)

, (α,ϕ)
)
7→ (β, ψ),

where ψ = ψ′ ∪ ϕ and β ∈ TO([b)L2) satisfies β ∼[a)L1 β′ and β ↾ [a)L1 = α,
defines a map

hb
L1,L2

:
⋃

a ∈J(L1)

(
Ca,b

L1,L2
× Ba

L1

)
→ Bb

L2
.

Proof. Let a ∈ J(L1). If b 6≤ a, then the set Ca,b
L1,L2

is empty. Suppose that

b ≤ a. Let (α,ϕ) ∈ Ba
L1
, and

(
[β′][a)L1 , ψ

′
)

∈ Cb
L1,L2

. Let (β, ψ) be the pair
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defined by the correspondence (4.2). According to Lemma 4.1 such a pair exists
and is uniquely determined. We prove that (β, ψ) ∈ Bb

L2
. It suffices to verify

that

(i) [b)L2 ⊇ ∪ψ,
(ii) for all b′ > b in J(L2), if [b

′)L2 ∈ H(β), then [b′)L2 + ∪ψ.

Ad (i): By the definition [b)L2 ⊇ ∪ψ′. Since we have supposed that b ≤ a,
[b)L2 ⊇ [a)L1 ⊇ ∪ϕ. It follows that [b)L2 ⊇ (∪ψ′) ∪ (∪ϕ) = ∪ψ.
Ad (ii): Let b′ ∈ H(β) for some b ≤ b′ ∈ J(L2). If b′ + ∪ψ′ we are done.

Assume otherwise. Then, by property (v) of Ca,b
L1,L2

, b′ 6≤ a, that is, [b′)L2 ∩

L1 + [a)L1 . By Lemma 4.2, [b
′)L2 ∩ L1 = [a

′)L1 for some a′ ∈ J(L1). Since
[b′)L2 ∈ H(β), we have that [a′)L1 ∈ H (β ↾ ([b)L2 ∩ L1))). By property (iii)

of Ca,b
L1,L2

, also [a)L1 ↾ H (β ∈ ([b)L2 ∩ L1))), and so either [a
′)L1 ⊇ [a)L1 or

[a)L1 ) [a′)L1 . According to the assumption that b′ 6≤ a, only the latter case is
possible, and so a < a′ and [a′)L1 ∈ H(α). By property (ii) of Ba

L1
, we have

that [a′)L1 + ∪ϕ, whence [b′)L2 + ∪ψ. ¤

Lemma 4.4. Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2. Let
b ∈ J(L2). The map hb

L1,L2
defined by (4.2) is a bijection.

Proof. First we prove that the map hb
L1,L2

is onto. Let (β, ψ) ∈ Bb
L2
. Denote

by ϕ the restriction ψ ↾ P(L1). By Lemma 4.2, [b)L2 ∩ L1 = [c)L1 for some
c ∈ J(L1). Since, by property (i) of B

b
L2
, [b)L2 ⊇ ∪ψ, we have that [c)L1 ⊇ ∪ϕ.

The set of all a′ ∈ J(L1) for which [a
′)L1 ∈ H (β ↾ ([b)L2 ∩ L1)) and [a

′)L1 ⊇ ∪ϕ
is nonempty (it contains at least c) and totally ordered with respect to β. Let a
be the greatest element of this set. Put α = β ↾ [a)L1 . It is straightforward that
(α,ϕ) ∈ Ba

L1
.

Denote by ψ′ the restriction ψ ↾ (P(L2)rP(L1)). Trivially [b)L2 ⊇ ∪ψ′, and we
have chosen a ∈ L1 so that [a)L1 ∈ H (β ↾ ([b)L2 ∩ L1)). In order to prove that

([β][a)L2 , ψ
′) ∈ Ca,b

L1,L2
, it suffices to verify that [b′)L2 + ∪ψ′ for every b′ ∈ J(L2)

such that b < b′ ≤ a and [b′)L2 ∈ H(β). Let b′ ∈ J(L2) be any such element.
Then [b′)L2 + ∪ψ by property (iii) of Bb

L2
, and since b′ ≤ a and [a)L1 ⊇ ∪ϕ, we

have that [b′)L2 ⊇ [a)L1 ⊇ ∪ϕ, whence [b′)L2 + ∪ψ′.
By the definition,

hb
L1,L2

((
[β][a)L1 , ψ

′
)

, (α,ϕ)
)
= (β, ψ).

It remains to verify that the map hb
L1,L2

is one-to-one. Let

hb
L1,L2

((
[β′][a)L1 , ψ

′
)

, (α,ϕ)
)
= (β, ψ)

for some a ∈ J(L1), ([β
′][a)L2 , ψ

′) ∈ Ca,b
L1,L2

, and (α,ϕ) ∈ Ba
L1
. According

to property (iii) of Ca,b
L1,L2

, [a)L1 ∈ H (β′ ↾ ([b)L2 ∩ L1)) which is equivalent to
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[a)L1 ∈ H (β ↾ ([b)L2 ∩ L1)). By property (ii) of Ba
L1
, [a′)L1 + ∪ϕ for every

a < a′ ∈ J(L1) such that [a
′)L1 ∈ H(α). Since α = β ↾ [a)L1 , a is the greatest

element, with respect to the total order β, of the set of all a′ ∈ J(L1) which
satisfy [a′)L1 ∈ H (β ↾ ([b)L2 ∩ L1)) and [a

′)L1 ⊇ ∪ϕ. It follows that a is uniquely
determined by the pair (β, ψ). Since ϕ = ψ ↾ P(L1), α = β ↾ [a)L1 , ψ′ = ψ ↾

(P(L2)r P(L1)), and [β
′][a)L1 = [β][a)L1 , the map hb

L1,L2
is one-to-one. ¤

Lemma 4.5. Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2, let
L2 be a (0, 1)-sublattice of a finite distributive lattice L3. Then

[CL1,L3 , hL1,L3 ] = [CL2,L3 , hL2,L3 ] ◦ [CL1,L2 , hL1,L2 ].

Proof. Let a ∈ J(L1) and c ∈ j(L3). We set

C̃a,c
L1,L2,L3

=
⋃

b∈J(L2)

(
Cb,c

L2,L3
× Ca,b

L1,L2

)
,

and we define a map h̃c
L1,L2,L3

:
⋃

a ∈J(L1)

(
C̃a,c

L1,L2,L3
× Ba

L1

)
→ Bc

L3
by the rule

h̃c
L1,L2,L3

(((
[γ′][b)L2 , χ

′
)

,
(
[β′][a)L1 , ψ

′
))

, (α,ϕ)
)
=

hc
L2,L3

((
[γ′][b)L2 , χ

′
)

, hb
L1,L2

((
[β′][a)L1 , ψ

′
))

, (α,ϕ)
)

for every (α,ϕ) ∈ Ba
L1
,

(
[β′][a)L1 , ψ

′
)

∈ Ca,b
L1,L2

, and
(
[γ′][b)L2 , χ

′
)

∈ Cb,c
L2,L3

.

By the definition of the composition of morphisms in the category c,

[C̃L1,L2,L3 , h̃L1,L2,L3 ] = [CL2,L3 , hL2,L3 ] ◦ [CL1,L2 , hL1,L2 ].

For every a ∈ J(L1) and c ∈ J(L3), define a map ga,c
L1,L2,L3

: C̃a,c
L1,L2,L3

→ Ca,c
L1,L3

by the rule

((
[γ′][b)L2 , χ

′
)

,
(
[β′][a)L1 , ψ

′
))

7→
(
[γ′′][a)L1 , χ

′′
)

,

where χ′′ = χ′ ∪ ψ′ and γ′′ satisfies both γ′′ ∼[b)L2 γ′ and (γ′′ ↾ [b)L2) ∼[a)L1 β′.
By an argument similar to the one of the proof of Lemma 4.1, we easily see
that such a γ′′ ∈ TO([c)L3) exists and that its properties uniquely determine
the equivalence class [γ′′][a)L1 .

Let (α,ϕ) ∈ Ba
L1
,
(
[β′][a)L2 , ψ

′
)
∈ Ca,b

L1,L2
, and

(
[γ′][b)L2 , χ

′
)
∈ Cb,c

L2,L3
. Let

(
[γ′′][a)L1 , χ

′′
)
= ga,c

L1,L2,L3

((
[γ′][b)L2 , χ

′
)

,
(
[β′][a)L1 , ψ

′
))

.
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Then, on the one hand,

h̃c
L1,L2,L3

(((
[γ′][b)L2 , χ

′
)

,
(
[β′][a)L1 , ψ

′
))

, (α,ϕ)
)
=

= hc
L2,L3

((
[γ′][b)L2 , χ

′
)

, hb
L1,L2

((
[β′][a)L1 , ψ

′
))

, (α,ϕ)
)
=

= hc
L2,L3

((
[γ′][b)L2 , χ

′
)

, (β, ψ)
)

,

where ψ = ψ′ ∪ ϕ, β ∼[a)L1 β′, and β ↾ [a)L1 = α. Consequently,

hc
L2,L3

((
[γ′][b)L2 , χ

′
)

, (β, ψ)
)
= (γ, χ),

where χ = χ′∪ψ, γ ∼[b)L2 γ′, and γ ↾ [b)L2 = β, which implies both (γ ↾ [b)L2) ∼[a)L1
β′ and γ ↾ [a)L1 = α.
On the other hand,

hc
L1,L3

((
[γ′′][a)L1 , χ

′′
)

, (α,ϕ)
)
= (γ̃, χ̃),

where χ̃ = χ′′ ∪ ϕ = χ′ ∪ ψ′ ∪ ϕ, γ̃ ∼[a)L1 γ′′, and γ̃ ↾ [a)L1 = α. It follows that

γ̃ ∼[b)L2 γ′ and since, by the definition, (γ′′ ↾ [b)L2) ∼[a)L1 β′, we have that also

(γ̃ ↾ [b)L2) ∼[a)L1 β′. Thus γ̃ = γ and χ̃ = χ. ¤

Lemma 4.6. Let L1 be a proper (0, 1)-sublattice of a finite distributive lattice L2.

Then Ca,b
L1,L2

6= ∅ iff b ≤ a, for every a ∈ J(L1) and b ∈ J(L2).

Proof. (⇒) It follows directly from the definition. (⇐) Suppose that a ≥ b.
Let β′ be any total order on the set [b)L2 such that [a)L1 ∈ H (β′ ↾ ([b)L2 ∩ L1)).
Define ψ′(L2) = [b)L2 (it is exactly here that we use the assumption L1 6= L2),
while ψ′(K) = ∅ for every K ( L2 from P(L2) r P(L1). It is straightforward

that
(
[β′][a)L1 , ψ

′
)
∈ Ca,b

L1,L2
. ¤

Theorem 4.7. Every distributive (0, 1)-lattice is isomorphic to the semilattice
of finitely generated ideals of some locally matricial algebra.

Proof. Let L be a distributive (0, 1)-lattice. Denote by P the poset of all (0, 1)-
sublattices of L ordered by inclusion. For all L1 ⊆ L2 in P denote by iL1,L2
the inclusion map. If the lattice L is finite, the assertion follows from Theo-
rem 3.1. Suppose that L is infinite. Then P has no maximal elements and

L ≃ lim−→〈L1, iL1,L2〉L1⊆L2 in P
.

It follows from Lemma 4.5 that

〈BL1 , [CL1,L2 , hL1,L2 ]〉L1(L2 in P
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is a direct system in the category c. Let L1 ( L2 in P . By Lemma 4.6, Ca,b
L1,L2

6= ∅

iff b ≤ a, for every a ∈ J(L1), and b ∈ J(L2). It follows that the morphism
[CL1,L2 , hL1,L2 ] is iL1,L2-induced with respect to identity maps. Finally, we apply
Proposition 2.10. ¤

We have proved (Theorem 3.1, Theorem 3.2, Theorem 4.5) that every distribu-
tive (∨, 0, 1)-semilattice which is either

(a) countable or
(b) strongly distributive or
(c) a lattice

can be represented as the semilattice of all finitely generated ideals of some
unital locally matricial algebra. It is easy to observe how these results imply
that every distributive (∨, 0)-semilattice which is either countable or strongly
distributive or a lattice is isomorphic to the semilattice of finitely generated
ideals of a locally matricial algebra, now not necessarily with a unit element.
Indeed, for a semilattice S, we denote by Ŝ the semilattice obtained by adding to
S a new element 1 such that 1 > s for every s ∈ S. If S is a distributive (∨, 0)-

semilattice satisfying (a), (b) or (c), then Ŝ is a (∨, 0, 1)-semilattice satisfying
(a), (b) or (c), respectively. Then there exists a locally matricial algebra R with

Idc(R) ≃ Ŝ. The algebra R has a unique maximal two-sided ideal I which itself is
a (non unital) locally matricial algebra and the semilattice of its finitely generated
two-sided ideals is isomorphic to S.

5. The Γ-invariant problem

In this section we show how to solve the Γ-invariant problem applying the main
results of Section 4. The idea of the use of the Γ-invariants to classify uniform
modules over associative rings is due to J. Trlifaj [T1, T2] and P.C. Eklof [ET].
We outlined the idea in the Introduction, now we are going to study it in detail.

Definition. Let L be a (0, 1)-lattice.

(i) Let σ be a nonzero ordinal number. A sequence A = (aα| α < σ)
of nonzero elements of L is called a cofinal strictly decreasing chain
(or c.d.c.) if
(1) aα+1 < aα for all α < σ,
(2) aβ =

∧
α<β aα for all limit ordinals β < σ,

(3) if 0 6= a ∈ L, then there is α < σ such that aα ≤ a.
(ii) The lattice L is called strongly dense provided L possesses a c.d.c.
The dimension of a strongly dense lattice L is the minimal length of
a c.d.c. in L.

Definition. Let L be a (0, 1)-lattice. Let a < b < 1 be elements of L. Then b
is complemented over a if there is c ∈ L such that b ∧ c = a and b ∨ c = 1.
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Definition. Let L be a strongly dense modular lattice of uncountable dimen-
sion κ. Let A = (aα| α < κ) be a c.d.c. in L. Put

E(A) = {α < κ| ∃β>α: aα is not complemented over aβ} .

Denote by B(κ) the Boolean algebra of all subsets of κmodulo the filter generated
by closed unbounded sets. Given a subset E of κ, we denote by E the element
of B(κ) represented by E. The equivalence class E(A) does not depend on a par-
ticular choice of a c.d.c. of the minimal length κ [ET, Lemma 1.8]. It is called
the Γ -invariant, Γ(L), of the strongly dense lattice L.

Let κ be a regular uncountable cardinal and let E be a subset of κ r {∅}. Let
LE be the lattice defined in [ET, Definition 1.12], that is, the (0, 1)-sublattice
of the lattice of all subsets of κ ordered by inverse inclusion generated by in-
tervals [α, β), where α < β < κ and α /∈ E. By [ET, Theorem 1.13], LE is
a strongly dense distributive lattice of cardinality and dimension κ such that
Γ(LE) = E. Denote by IE the ideal lattice of LE . By [ET, Theorem 1.15], IE

is a strongly dense algebraic distributive lattice of dimension κ whose greatest
element is compact and Γ(IE) = E.
Let L be a modular lattice. Then

{a ∈ L| b is not complemented over a}

is a lower subset of L for every nonzero element b ∈ L [ET, Lemma 1.4]. A nonzero
element b of the lattice L is called weakly complemented if b is complemented
over a for every a with 0 < a < b.

Definition. Let L be a strongly dense lattice of dimension κ > 1.

(i) L is complementing provided L possesses a c.d.c. A = (aα| α < κ) such
that for all α < β < κ, aα is complemented over aβ .

(ii) L is narrow provided that it is not complementing and L possesses
a c.d.c. A = (aα| α < κ) such that for all α < β < κ, aα is not comple-
mented over aβ .

(iii) L is constricted provided that it does not have a c.d.c. A = (aα| α < κ)
such that for all α < κ, aα+1 is weakly complemented.

By [ET, Theorem 1.10], a strongly dense modular lattice L of dimension

κ is complementing if and only if Γ(L) = ∅ and it is narrow if and only if
Γ(L) = κ. Due to [ET, Corollary 1.11], the lattice L is constricted if and only
if there exists a > 0 in L such that a′ is not weakly complemented for every a′

with 0 < a′ < a. It follows that L is narrow provided L is constricted. On
the other hand, given an uncountable regular cardinal κ, the lattice LE2 where
E2 = {α < κ| α is a limit ordinal} is a narrow but not constricted distributive
lattice of dimension κ [ET, Corollary 1.14].
An R-module M is called strongly uniform provided the lattice L(M) of its
submodules is strongly dense. The dimension and the Γ-invariant of a strongly
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uniform module M correspond to the dimension and the Γ-invariant of the lat-
tice L(M). A strongly uniform module M is complementing, narrow, or
constricted if the lattice L(M) is complementing, narrow, or constricted. The
following problems are stated in [ET]:

[ET, Problem 2.3]. For an uncountable regular cardinal κ, which elements
of B(κ), other than κ, are the Γ -invariant of a strongly uniform module over
a regular ring?

[ET, Problem 2.4]. Is there a strongly uniform module of dimension κ which
is narrow but not constricted?

Both the problems are solved combining Theorem 4.5 and [ET, Lemma 2.1]:

[ET, Lemma 2.1]. Let L be an algebraic lattice and k be a field. Assume that
L ≃ Id(S) for a k-algebra S. Then L ≃ L(M) for some right R-module M ,
where R = S ⊗k Sop. Moreover, if S is a locally matricial k-algebra, then so is
R.

Theorem 5.1. Let κ be an uncountable regular cardinal, let E be a subset of
κr{0}. Then there exists a locally matricial algebra R and a right R-module M
with L(M) ≃ IE.

In particular, all elements of B(κ) are realized as the Γ -invariant of a strongly
uniform module over a unit-regular ring.

Proof. Since IE
c ≃ LE , compact elements of IE form a distributive lattice. By

Theorem 4.5, there exists a locally matricial algebra S with Idc(S) ≃ LE , whence
Id(S) ≃ IE . Now, by [ET, Lemma 2.1], L(M) ≃ IE for a right R = S ⊗ Sop-
module M , and R is a locally matricial algebra. ¤

Theorem 5.2. For every uncountable regular cardinal κ there exists a strongly
uniform module of dimension κ, over a locally matricial algebra, which is narrow
but not constricted.

Proof. Let

E2 = {α < κ| α is a limit ordinal} .

Then the algebraic lattice IE2 is narrow but not constricted. By Theorem 5.1,
there are a locally matricial algebra R and a right R-module M with L(M) ≃
IE2 . ¤
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eree. He is especially grateful to Friedrich Wehrung for many comments and
suggestions which considerably improved the paper.



26 PAVEL RŮŽIČKA
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