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ABSTRACT. We develop a method of representation of distributive (V, 0, 1)-semilattices
as semilattices of finitely generated ideals of locally matricial algebras. We use

the method to reprove two representation results by G.M. Bergman and prove

a new one that every distributive (0, 1)-lattice is, as a semilattice, isomorphic to

the semilattice of all finitely generated ideals of a locally matricial algebra. We
apply this fact to solve the I'-invariant problem.

Introduction

A lattice is strongly dense provided it possesses a cofinal continuous strictly
decreasing chain (shortly c.d.c.) in the poset of its nonzero elements. The di-
mension of a strongly dense lattice is the length of its shortest c.d.c. If a mod-
ular strongly dense lattice L has dimension Xy then L possesses either a c.d.c.
(am| n < w) such that a,, is complemented over a,, for every n < m (we say that
L is complementing) or a c.d.c. (a,,| n < w) such that a,, is not complemented
over a,, for every n < m (then we say that the lattice L is narrow). For strongly
dense lattices of uncountable dimension k is defined an invariant, called the I'-
invariant, which is an element of B(k), the Boolean algebra of all subsets of
modulo the filter generated by closed unbounded subsets. This invariant in some
sense measures the failure of the lattice to be relatively complemented [ET].

Let E denote the element of B(k) represented by a subset F of an uncountable
regular cardinal k. By [ET, Theorem 1.3], there exists a distributive strongly
dense lattice of dimension (and cardinality) » whose I'-invariant is E. Further-
more, the lattice Ig of all nonzero ideals of L is an algebraic distributive strongly
dense lattice of dimension x with the I'-invariant E.
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A right module over an associative ring is strongly uniform provided its sub-
module lattice is strongly dense. The dimension and the I'-invariant of a strongly
uniform module are defined as the dimension and the I'-invariant of its submod-
ule lattice. J. Trlifaj [T1] studied possible values of the dimensions and the I'-
invariants of strongly uniform modules over rings of various types. In particular,
he proved that every strongly uniform module over a commutative Noetherian
ring is of finite or countable dimension and that in the latter case it is nar-
row [T1, Theorem 2.8]. Over commutative rings [T1, Theorem 2.10] or (non-
commutative) Noetherian rings [T1, Example 2.11] there are strongly uniform
modules of any uncountable dimension k, but their only possible I'-invariant is
k. Finally, for every regular cardinal number x, he found an example of a module
of dimension k over a unit-regular ring. The I'-invariants of these modules were
again k and he asked about all the possible values of the I'-invariants of strongly
uniform modules over non-right perfect rings, in particular, over rings which are
von Neumann regular [T1, Open problem 3|. This question will be referred as
the I'-invariant problem.

Later on, P. C. Eklof and J. Trlifaj constructed a strongly dense module of a count-
able dimension which is complementing and more complex examples of strongly
uniform modules of an uncountable dimension over a locally semisimple algebra
(which is a unit-regular ring) [ET, Theorem 2.7] but the I'-invariant problem
remained open [ET, Problem 2.3].

The I'-invariant problem was our original motivation. We have tried to apply
the following idea [ET]: A ring R is a right module over the ring R ®z R°P (with
the multiplication given by t(r ® s) = str) and submodules of this module cor-
respond to two-sided ideals of the ring R. In general, regularity is not preserved
by this tensor product construction but if R is a locally matricial algebra, then
the ring R ®z R°P is a locally matricial algebra as well. Thus we focused on
representations of algebraic lattices as the lattices of two-sided ideals of locally
matricial algebras.

It is well know that the lattice of two-sided ideals of a von Neumann regular
ring is distributive. G. M. Bergman [Be| proved that every algebraic distributive
lattice either isomorphic to the lattice of lower subsets of a partially ordered set
or with at most countably many compact elements is isomorphic to the two-sided
ideal lattice of a locally matricial algebra. In contrast, F. Wehrung (W1, W2| con-
structed an algebraic distributive lattice with Ny compact elements which cannot
be realized as the lattice of two-sided ideals of any von Neumann regular ring.
Further, he proved that if an algebraic distributive lattice has N; compact ele-
ments, then it can be realized as the lattice of two-sided ideals of a von Neumann
regular rings [W3|; however, he proved recently that the result fails for locally
matricial algebras [W4].

The main result of the paper is the realization of every algebraic distributive
lattice whose compact elements form a lattice as the lattice of two-sided ideals
of a locally matricial algebra [GW, Problem 1|. In particular, the lattice Ig
has such a realization for every subset F of a regular cardinal x, which leads
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to the solution of the I'-invariant problem.

At the same time as we have achieved this result, S. Shelah and J. Trlifaj [ST]
constructed for every regular cardinal x and every subset E of k, a vector space
V over a given field k and a k-subalgebra R of the endomorphism ring of V' such
that V, as an R-module, is strongly uniform of dimension s and its I'-invariant
equals E. However, the ring R is not von Neumann regular.

Now, let us outline the organization of the paper. In the first two sections we
develop tools for realization of distributive (V, 0, 1)-semilattices as semilattices
of finitely generated ideals of unital locally matricial algebras. In Section 3 we
use these tools to reprove Bergman’s results. Section 4 is devoted to the proof
of the main result and Section 5 to its application to the solution of the I'-invariant
problem.

Notation

The set of all natural numbers is denoted by w. This notation is used also
for the first infinite ordinal. Given a set M, we denote by P(M) the set of all
subsets of M, and by [M]<“ the set of all finite subsets of the set M. For a map
w: M — N, we define a map P(p): P(N) — P(M) by the correspondence
N’ +— ¢~ Y(N’), where N’ is a subset of N.

Let a be an element of a partially ordered set P. We use the notation

[a)p ={bc Pla<b},
(a]p={be P|b<a}

for the lower, upper subset of P generated by the element a, respectively. We
drop the subscript if the set P is understood.

Let C be a category. We denote by C(a,b) the set of all morphisms with
domain a and codomain b. By 1,, we denote the identity morphism of an object
a € C. For all categories except the category c defined in Section 2, identity
morphisms correspond to identity maps.

Let k be a field. Recall that a family (V;| ¢ € I) of subspaces of a k-vector
space V is independent if for every i € I, the intersection of V; with the sub-
space of V' spanned by (V;|j € I \ {i}) is the zero subspace. Given an inde-
pendent family (V;|i € I) of subspaces of a k-vector space V, we denote by
@,c; Vi the subspace of V' spanned by all the V;, i € I. Moreover, given a family
(fi: Vi = Wi e I) of k-linear maps, we denote by €,.; fi the unique k-linear
map f from @, , Vi to W such that f [ V; = f; for every i € I.

1. Distributive semilattices

Lattices of substructures, congruences, ideals, etc. of algebraic structures are
algebraic lattices [Gr, I1.3. Definition 12]:

(i) Let L be a complete lattice and let a be an element of L. Then a is called
compact, if a <\/ X, for some X C L, implies that a < X, for some
finite X; C X.
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(ii) A complete lattice is called algebraic, if every element is the join of com-
pact elements.

The set of compact elements of a complete lattice L is closed under finite joins
(not under finite meets in general) and contains the zero of L. Thus it forms
a (V,0)-semilattice, which we denote by L°.

The ideal lattice of every (V,0)-semilattice is algebraic. On the other hand,
every algebraic lattice L is isomorphic to Id(L¢), the lattice of all nonempty ideals
of the (V,0)-semilattice L° [Gr, II.3. Theorem 13].

A semilattice S is called distributive if a < by V by (a, by, by € S) implies
the existence of ag, a1 € S with a9 < by, a1 < by and a = ag V a; [Gr, page
131]. a (V,0)-semilattice S is distributive iff Id(S) (as a lattice) is distributive
[Gr, IL.5. Lemma 1, (iii)].

A nonzero element a of a distributive semilattice (resp. lattice) L is join-
irreducible, if a = bV ¢ implies that either a = b or a = ¢ for every b, ¢ € L.
We denote by J(L) the set of all join-irreducible elements of L, regarded as a
partially ordered set under the partial ordering of L [Gr, page 81]. A subset H
of a partially ordered set P is hereditary, if for every b € H and every a € P,
a < bimplies that a € H. We denote by H(P) the set of all hereditary subsets
of P. Observe that H(P) with intersection and union as meet and join forms
a distributive lattice. Every finite distributive semilattice (resp. lattice) L is
isomorphic to the semilattice (resp. lattice) H(J(L)) of all hereditary subsets of
J(L) partially ordered by set inclusion [Gr, II.1. Theorem 9.

A finite distributive (V,0, 1)-semilattice s is Boolean, if the order on the set
J(s) is trivial, that is, if s is isomorphic to the semilattice of all subsets of a finite
set.

We denote by

e s - the category of all finite distributive (V, 0, 1)-semilattices (with (V, 0, 1)-
preserving homomorphisms),

e b - the category of all finite Boolean semilattices (with (v, 0, 1)-preserving
homomorphisms).

Given a finite distributive (V, 0, 1)-semilattice s, we denote by Bo(s) the Boolean
semilattice of all subsets of the set J(s) and for each f € s(s1,$2), we define a
homomorphism Bo(f) € b(Bo(s1), Bo(sz)) by the rule

Bo(f)(X) ={j € J(s2)| 5 < F(\/ X)}, (X € Bo(s)).
Observe that Bo preserves the composition of morphisms but not the identity
morphisms, indeed, Bo(1,) = 1p,s) iff s is Boolean.
Let s be a finite distributive (V, 0, 1)-semilattice. We define a pair of semilattice
homomorphisms Kg: s — Bo(s) and Ls: Bo(s) — s by
Ki(x)={jeJ(s)lj<a}, (z€s)

and

L(X)=\/X, (X €Bo(s)).
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Observe that
(1.1) L,oK, =1,

and that for every homomorphism f € s(sy, s2), the equalities

(12) BO(f)OKsl :Ksz Of,
(1.3) foLs, = L, o Bo(f)
and

(1.4) Ky, 0 foLs, = Bo(f)
hold.

Proposition 1.1. Let P be a upwards directed partially ordered set without maz-
tmal elements and let

(sp; fp,q>pgq in P

be a direct system in s. If

(S, fp>pep = lim (s, fp,q)pgq in P’

then
<57 fpoLs, peP lim (Bo(sp), Bo(fp’q)>p<q in P

Proof. For allp € P,put L, =L, , K, = K, and g, = fp o Ls,. For each pair
p<qin P, set g, 4= Bo(fp.q)-
For all p<qin P,

9p=JpoLp=Jfe0 [pq0oLly=[40Lq0gpqg=94°Ip.aq
by (1.3). Let <T, g]',>pep be such that for every p < ¢ in P,
9p = 94 ° Ip.q-
We show that there exists exactly one (V, 0, 1)-semilattice homomorphism h: S —

T such that ho g, = g, for every p € P.
Put f, =g, o K, for all p € P. Then

féofzxqzgéquofnq:géogp,qungé)oKp:fg/J
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for every p < g in P by (1.2). Then, since (.S, fp>p cp is a direct limit of the direct
system (s, fp,q)p <qin p» there exists a unique homomorphism h: S — T such
that
ho f, = f}’)
for every p € P. It follows that for every p < ¢ in P,
hogp:hofpoLp:f;oLp:g;oKpoLp:g;ogquoKpoLp:
:g;quofp,qoLp:g;ogp’q :g;)
(the 5" equality is due to (1.2), the 6*® equality is due to (1.4)). Suppose that
h': S — T is a (V,0,1)-semilattice homomorphism satisfying h' o g, = g, for
every p € P. Then
h'ogpoKp:g;oKp, (p e P),
hence
hloprLPOKp:f;/w (p € P),
and so, by (1.1),
hofp=fp
for every p € P. It follows that h = h/. O

P. Pudlék [Pu] proved that every distributive (V,0)-semilattice is the directed
union of all its finite distributive (V,0)-subsemilattices. Consequently, every
distributive (V,0,1)-semilattice is a direct limit of a direct system S of finite
distributive semilattices and (V, 0, 1)-preserving embeddings. Furthermore, we
can assume that § is indexed by an upwards directed partially ordered set with-

out maximal elements. Then, as a corollary of Proposition 1.1, we obtain the
following result of K.R. Goodearl and F. Wehrung [GW, Theorem 6.6].

Corollary 1.2. Ewvery distributive (V, 0, 1)-semilattice is a direct limit of Boolean
semilattices (and (V,0,1)-preserving homomorphisms).

2. The category c

All rings are associative with a unit element, all ring homomorphisms are
supposed to preserve the unit. For a ring R, we denote by Id(R) the lattice
of two-sided ideals of R and by Id°(R) the semilattice of compact elements of
the lattice Id(R), that is, the semilattice of finitely generated two-sided ideals of
R. Notice that Id°(R) is a (V, 0, 1)-semilattice.

Given a ring homomorphism ¢: R — S, we define a map Id°(y): Id°(R) —
Id°(S) by the correspondence

(2.1) I+ Sy(I)S.

The map Id°(¢) is a (V, 0, 1)-semilattice homomorphism, and it is straightforward
to verify that Id° is a direct limits preserving functor from the category of rings
to the category of (V,0,1)-semilattices.

The following example shows that it is not possible to define, in a similar way,
a functor Id from the category of rings to the category of all algebraic lattices.
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Example 2.1. Let k be a field, let R=Fk x k and S = k x M(k) be k-algebras.
Put e; = (1,0), e2 = (0,1), and

F=(1(59) o= (0.(30)) = (0.(39))-

Denote by I, Is the two-sided ideals of R generated by primitive idempotents eq,
ea, respectively, and by J the two-sided ideal of S generated by go. Let p: R — S
be the ring homomorphism defined on the generators e1, ea of R by p(e1) = f+g1,
p(e2) = g2. Then correspondence (2.1) assigns to the ideal I the whole ring S
and the ideal I is mapped to J. Since Iy NIy = 0, while SN J = J, the map 1d°
does not preserves finite meets.

Let k£ be a field. A matricial k-algebra R is an k-algebra of the form
Mp(l)(k') X ... X Mp(n)(k)

for some natural numbers p(1),...,p(n) [Go, page 217]. The semilattice Id°(R)
of all finitely generated two-sided ideals of the matricial algebra R is isomorphic
to the Boolean semilattice of all subsets of the set {1,...,n}. We fix a field k
and denote by m the category of all matricial k-algebras. Recall that a k-algebra
is locally matricial provided it is a direct limit of matricial k-algebras.

In this section we shall define a new category c and a pair of functors A: ¢ — m
and A: ¢ — s such that there is a natural isomorphism 7: Id°A — A.

Definition. An object B of the category c consists of a finite set I and a family
(Bi] 1el ) of nonempty pairwise disjoint finite sets.

Let By = (Bj|i€ I1), By = (Bi] j € I2) be objects of the category c. A pre-
morphism B; — Bs is a pair (C, h), where C = (C’i’j| iel, je Ig) is a family
of (possibly empty) finite sets and h = (h?| j € I5) is a family of bijections

W | (0 x BY) = B,
il
We denote by ¢’(Bj, Bs) the collection~ o£ all premorphisms By — Bs.
We say that premorphisms (C, h), (C,h) € ¢/(B1, Bs) are equivalent (we write
(C,h) ~ (C, h)) if there is a collection (gi’j: Cid — Chilielh,je Ig) of maps
such that for every i € I, j € I», and for every c € C*I, b € B,

(2.2) i (e,b) = 17 (g™ (c),b) .

Observe that the maps ¢g*7, i € Iy, j € I satisfying (2.2) are necessarily bijec-
tions. The morphisms in c are the equivalence classes with respect to the equiv-
alence relation ~, that is

C(Bl,BQ) = C/(Bl,BQ)/ ~ .
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Denote by [C,h], or sometimes [(C,h)], the equivalence class represented by
the premorphism (C,h). We say that [C, h] is a morphism from B; to Bs.

Now we shall define the composition of morphisms in c. First we describe
how the premorphisms are composed. For objects By = (Bﬂ 1€ Il), By =
(B%| j € I), By = (B%| k € I3) of the category ¢ and premorphisms (Ct, hy) €
¢’ (By, B2), (C2,hs2) € ¢’ (Bg, Bs), the composition (C,h) = (Ca, hg) o (Cy, hy)
consists of the family C' = (C““| 1€, ke Ig) of sets, resp. a family h =
(hk| k€ Ig) of maps defined by

ok = |J (cfh = o)

VISP

for every ¢ € I, k € I3, resp.
h* ((ca,c1),b) = ht (cQ,h{ (cl,b)>

for every b € B, c; € Ci’j, cy € Cg’k, where ¢ € I1, j € Is, and k € I3.

Lemma 2.2. Let By = (Bi|i € I), By = (Bg| je 12), and By = (BY| k € I5)

be objects of the category c. Let (C1,h1), (C1,hy) € c'(B1, B2) and (Cs, h),
(Cg,hg) c C/(BQ,Bg). If (Cl,hl) ~ (Cl,hl) and (Cg,hg) ~ (Cg,hg), then

(02, hg) e} (Cl, hl) ~ (62,%2) e} (61,%1).

Proof. Since (Cy, hy) ~ (Cy, hy), there are maps
97 O — 5?7 (teli, jely)
such that for every b € Bi and ¢ € C}7,
P (e,b) = b (917 (e).b).
Similarly, since (Cs, ha) ~ (52,%2), there are maps
G*CFt — CfF, (Ge by, kely)
such that for every b € B} and ¢ € Cg’k,

5 (e,b) = B (g5 (0).b)
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We put
g+ = (g%’k X gi"]) , (el kely),

JjE€l>

and we denote by (C, h), resp. (5’,%) the composition (Ca, hs) o (C1,h1), resp.
(Cy,ha) o (C1, hi). Then for every b € Bi, ¢; € C7 and ¢y € CJ*, where i € I,
j €15, and k € I3,

W ((care1) ) = b (ea h(er. b)) = 5 (95" (ca). ] (917 (1) b)) =
— Rk ((gg’k(@),gi’j(clw ,b) — hF (gi7k(CQ,C1),b) )
0J

Let (Cq, hs), (C1, h1) be premorphisms as above. Lemma 2.2 enables us to de-
fine

[(Ca, h2) o (C1, h1)] = [(C2, ha)] o [(C1, h1)].

It remains to prove that the composition is associative and that every object of
c possesses an identity morphism.

Lemma 2.3. The composition of morphisms is associative, that is, let B, =
(Bili€l,), n=1,...,4, be objects of the category c and let [Cy,, hy,] € (B, Byy1)
forn =1,2,3, then

[C3, hs] 0 ([C’g,hg] o [Cl,h1]> - ([cg,hg] o [02,h2]> o [Ch, hal.

Proof. Put
(C.h) = (Ca,ha) o ((Ca,ha) o (Cr, b))

and

(C.7) = ((Cs.h) o (Carha) ) o (Co, ).
We prove that
(2.3) (C,h) ~ (C,h).

It follows from the definition that for every ¢ € I;, and [ € 14,

o= (e (U (e xei) | ] = U U (b = (ci* < i),

kels J€l> J€I> kels

while

o= (( U (5 x cg*’“)) x C{J) = U U ((e5' xcg*) x i)
JEI2 kels VISIPRASIE
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It is straightforward to verify that for every b € B!, ¢ € C’i’j, ca € C’g’k, and
c3 € C’gf’l, where i € I1, j € I, k € I3, and | € I, the equality

(2.4) B ((c3, (ca, 1)) ,b) = Rl (03, Bk (cz, W (cl,b))> = ' (((e3,¢2),c1) ,b)

holds. Finally, for all i € I; and [ € I, define a bijection g*': C»! — Ol by
the correspondence (cs3,(c2,c1)) — ((c3,¢2),¢1). Then, due to (2.4), for every
b € Bi and every c € C%!,

B (e,b) = h'(g"!(c), b).

This proves (2.3). O

Given an object B = (Bl\ 1€ I) in the category c, we put

(i}, ifi=j

for every i, j € I and we define maps b/, j € I, from |J,o; (C*™7 x BY) = {j} x B’
to B by the correspondence (j,b) — b.

Lemma 2.4. The map (C,h) is an identity morphism of the object B.

Proof. Let By = (Bj| i € Iy) be an object in the category ¢ and let (Cy, hg) €
c/(By, B). Denote by (Cy, ho) the composition (C, h) o (Cop, hg). We prove that

(2.5) (Co, ho) ~ (Co, ho).
By the definition, for every i € Iy, and j € I,

Gyt = ¥ x Y = (< G,
and for every b € B} and ¢ € O/,

(2.6) 1((7,0),b) = 7 (. h(e.)) = i (e.b).

For all i € Iy, j € I, define a map ¢g/: C{7 — Ci7 by the correspondence
¢+ (j,¢). Tt follows from (2.6) that for every b € B} and c € Cp”,

hé(c, b) = %{) (gi’j(c), b) )

This proves (2.5).
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On the other hand, let B; = (B{| j € I1) be an object of the category ¢ and
let (Cq,h1) € ¢/(B,B1). Denote by (Ci,hy) the composition (Cy,hq) o (C,h).
We prove that

(2.7) (C1, 1) ~ (Ci,Ty).
Let ¢ € I, and j € I;. By the definition,
C17 =07 x ™ =017 x {i},
and for every b € B, c € C'%J,
(28) 1 ((e,1),b) = W (¢, h' (i, b)) = b (e, b).
For all ¢ € C"7, define g"/(c) = (c,i). Then, by (2.8), for every b € B’ and
ceCy,
I (c,b) = hi(g"(c),0).

This proves (2.7). O

Now we know that c is a category. The next step is to define a functor,
which we shall denote by A, from the category c to the category m of matricial
algebras. Let B = (B;| i € I) be an object of the category c. For all i € I,
denote by V(B") the vector space with basis B’, and let V/(B) = @,.; V(B") be

the vector space with basis B (note that since the sets B;, i € I, are disjoint,
the family (V' (B;)| i € I) of vector spaces is independent). Define

A(B) ={a €End(V(B))| Vi€ I:a (V(B")) C V(B")}

For all & € End(V(B)), denote by o the restriction v | V (B*). Observe that
A(B) is a matricial algebra isomorphic to [],.; End(V (B?)).

Let (C,h): By — By be a premorphism in the category c. For all i € I3,
j € Iy, denote by V (C’i’j) the vector space with basis C%J/. For every j € I,
the bijection

W: | J (€™ x Bj) = Bj
1€l
induces an isomorphism
¢ @ (V(CY) @ V(B])) = V(BY).
i€l

For all « € A(By), set
(2.9) AC,h)(a) = ¢ o <€B (Ly(ciiy ® ai)) o (¢)71

j€ls 1€l

Observe that A(C, h)(c)? is an endomorphism of the vector space V(B3) for every
j € I, and so A(C,h)(a) € A (B3).
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Lemma 2.5. Let By, By be objects of the category ¢ and let (C,h) € ¢(By, Bs).
Then A(C,h): A(B1) — A(Bs) is a homomorphism of unitary k-algebras.

Proof. It suffices to verify that for every a, 5 € A(B;) and for every element ¢
of the field k,

A(C h)(a + B) = A(C, h)(a) + A(C, h)(B),
A(C, h)(a o B) = A(C, h)(a) o A(C, h)(5),
A(C, h)(ta) = tA(C,h)(w),
and
A(C,h)(Lv(py)) = 1v(By)-
But all these equalities are clear from the definition. [

Lemma 2.6. Let By, By be objects of the category ¢ and let (C,h), (C,h) €
c'(By,Bs). If (C,h) ~ (C,h), then A(C,h) = A(C,h).

Proof. Since (C,h) ~ (C, k), there are bijections gi: ' = C'“J such that for
every b € Bi, c € O,

B (g% (c),b) = Wi (c,b), (i€ I, j€l).

The bijections ¢*/ induce isomorphisms y%: V(C%) — V(C%) satisfying

¢’ o <€B (’Yi’j ® 1V(B{)>> = ¢,

i€l

and
i1 TiN—1 _ (49\—1
(619 (e 1V(B;-))> o (¢) 7 = (¢)
iely
for every j € I. Substituting in (2.9), a straightforward computation leads to
the equality A(C,h)(a) = A(C, h)(«) for every a € A(By). O

We define A ([C, h]) = A (C, h) for every morphism [C, h] € ¢ (B, Bz). In order
to prove that A is a functor we have to verify that it preserves both the compo-
sition of morphisms and the identity morphisms.

Lemma 2.7. The functor A preserves the composition of morphisms. In par-
ticular, let B, = (B£L| RS In), n = 1,2,3, be objects of the category c and let
(C1,h1) € ¢/(B1,Bs), (Ca,h2) € ¢'(Ba, B3) be premorphisms, then

A ((Ca,h2) 0 (C1,h1)) = A (Ca,h2) 0 A (Cr, hy).
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Proof. Denote by (C, h) the composition (Cs, ha)o(Cy, h1). Recall that for every
1 € Iq, ke I3,
ok = |J (cfh = ¢
JE€l>

and for every b € Bi, ¢ € Ci’j, and ¢y € Cg’k, where ¢ € I1, j € Iy and k € I3,

h* ((c2,¢1) ,b) = RE (CQ,h{ (cl,b)> .

It follows that '
" (20 c1) @) = 65 (2 @ 8] (1 @ D)),

where QS{, #5, ¢* are the vector space isomorphisms induced by the maps h{, Rk,
h*, respectively. Thus, for every k € I,

" = ko | @D (Ly(opry @el) | 00"

JE€I>
where 6% is the “corrective” homomorphism induced by the correspondence
(c2®c1) @b ca®(c1 ®@D)

(here again b € Bi, ¢; € C7, ¢y € CIF).
Let k € I3. Put ¢f = <®j€12 <1V(Cg,k) ®¢{)> o 0% and compute that
for every a € A(By),

(2.10) wlf o (@ (1V(Ci,k) & O/)) o) 7,le_1 = @ (]_V(C%‘,k) ®A(C’1,h1)(a)j> .

1€lq j€l2

Composing the morphisms in equality (2.10) with ¢, resp. (¢5)~! from the left,
resp. right hand side, we get that

A(C,h)(@)* = A(Ca, ha) (A(Cy, hy) ()"

O

Lemma 2.8. Let B = (B'|i € I) be an object of the category c. If [C,h] is
the identity morphism on B, then A(C,h) = 14(p).

Proof. Let By = (B{|j € I1) be an object of the category ¢ and (Cy,hy) €

¢/(B,B;) a premorphism such that C}7 # () for every i € I, j € I;. Then
the homomorphism A(C1, hy) is one-to-one, and by Lemmas 2.4, 2.6 and 2.7,

A(Cy, hy) 0 A(C,h) = A ((Cy,hy) o (C,h)) = A(Ch, ha).
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It follows that A(C,h) = 14(p). O

We define a functor A : ¢ — b as follows: For each object B = (B’| 1€ I),
we define A (B) to be the power-set semilattice P(/) of the set I. Given a pre-
morphism (C,h) € ¢/(By, Bs), we define a (V,0,1)-semilattice homomorphism
A (C,h): A (B1) — A (Bz) by the rule

J i {j €Ll | o # @}, (J € P(I)).

iceJ

It is clear that (C,h) ~ (C,h) implies that A (C,h) = A (C,h). Thus we are
entitled to define A ([C, h]) = A (C, h).

Any two-sided ideal of a matricial algebra is principal. For every a € A(B),
we denote by (a ) the two-sided ideal generated by the homomorphism «. Then
the rule

(o) = {i€lla’ #0}
defines an isomorphism np: Id°A (B) — A (B).
Lemma 2.9. The isomorphism n: Id°A — A is natural.
Proof. We prove that for every (C,h) € ¢/(B1, Bz), the diagram

d°A(By) “SACN, 140 4(By)

By l l’)Bg

A (B1) —— A (By)
A (C,h)

commutes. Let j € I and o € A(B;). Then
AC,h)onp,((a)) ={j el Jieh:a"#0 & C™ #0}.
Set 3 = A(C,h)(« ). Then
np, 0 I°A(C, h)((a ) = n5,((8 ) = {j € I| 7 # 0}
and, by the definition, for every j € I,
B =¢ o (@ (1v(civ) ® ai)) ot !,
i€l

where ¢/ is the isomorphism induced by the bijection h7. Then 37 # 0 iff

D (Lviciny @a’) #£0

7:6[1

iff there is ¢ € I; such that o # 0 and C%7 # (. O



IDEAL LATTICES OF LOCALLY MATRICIAL ALGEBRAS 15

Definition. Let f: s; — so be a homomorphism in s. Let By, By be objects
of the category B and let ¢;: I; — J(s;), i = 1,2, be isomorphisms of posets. We
say that a morphism [C, h| € ¢(By, B2) is f-induced with respect to ¢, 5 if
the diagram

Bo(s1) Bolh), Bo(ss)

P | [P

A([C,h
ABy) D, A (By)
commutes.

Observe that the morphism [C, h] is f-induced with respect to 1, €5 if and
only if C% # 0 iff f(e1(i)) > ea(j) for every i € I, j € Is.

Proposition 2.10. Let P be a partially ordered upwards directed set without
maximal elements. Let

(Sp, fp,q>p§q in P
be a direct system in s. Let

<Bp’ [CZMZ’ hp7q]>p<q in P

be a direct system in the category ¢ and (ep: I, — J(sp)| p € P) a family of bi-
jections such that [Cp 4, hyp 4] s a fpq-induced morphism with respect to e,, ¢,
for every p < q in P. If R is a direct limit of the diagram

(A(Bp) A[Cp.as Pp.a))) pcqin P

then 1d°(R) is isomorphic to lim (sp, fp,q) p<y in p -

Proof. This follows from Proposition 1.1 and the fact that the functor Id° com-
mutes with direct limits. [J

3. Bergman’s theorems

The purpose of this section is to illustrate the effectiveness of the tools de-
veloped in Sections 1 and 2. The results proved here are not going to be used
later in the paper. We reprove the two main results from the unpublished notes
by G.M. Bergman [Be]. Different proofs of the first of them were published
in [GW]. It states that every countable distributive (V, 0, 1)-semilattice is isomor-
phic to the semilattice of finitely generated two-sided ideals of a locally matricial
algebra. As far as I know, the second theorem has never been published. It is
the following assertion: Every strongly distributive (V, 0, 1)-semilattice is isomor-
phic to the semilattice of finitely generated ideals of a locally matricial algebra.
a (V,0)-semilattice is strongly distributive provided every element is a join
of join irreducible elements. The ideal lattices of strongly distributive (V,0)-
semilattices are characterized as the lattices of all hereditary subsets of partially
ordered sets [Be]. A strongly distributive (V, 0)-semilattice has a unit element if
and only if the corresponding partially ordered set P has finitely many maximal
elements and every element of P is under one of them [Be].
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Theorem 3.1. Every countable distributive (V,0, 1)-semilattice is isomorphic to
the semilattice of finitely generated two-sided ideals of a unital locally matricial
algebra.

Proof. Let S be a countable distributive (V,0, 1)-semilattice. By a theorem
of P. Pudlak, the semilattice S is the directed union of its finite distributive
(V,0,1)-subsemilattices [Pu]. Since S is countable, there is a countable sequence

30§51§52C...

of finite (V, 0, 1)-semilattices such that S = J,,, si. Put I,, = J(s,) and for all
n < m in w, denote by f, ,, the inclusion map s,, — sy,.
For each n € w and 7 € [,,, put

Bl = {(io .- in) € Io X -+ x I|ig > -+ > i, = i}.
Given n < m in w, set

Cry =Alin, - yim) €L X XIpli=ip >+ Zipm=j} (i€l jEIy)

and for every j € I, define an isomorphism A/, ,.: U,c; (Ch%, x BL) — B,

by the rule

i€l,

((iny -+ yim)s (i0s -+ 1in)) = (i0s -« - im).

We verify that

(i) for every n € w, for every i € I,,, B!, # 0,
(ii) if n < m, then for every i € I,, j € Iy,, C};3,, # 0 iff i > j.

Ad (i): Let n € w. It suffices to prove that for every i € I,, ;1 there exists j > i
in I,,. Since \/ I, =1 > and i is join irreducible, there is j € I,, with j > i and
we are done.

Ad (ii): Let n < m in w. Let ¢ € I,, and j € I,,, satisfy ¢ > j. Then there
exist ko,...,ki—1 € Ip41 with ¢ = kg V --- V ky—1, and since ¢ > j and j is
join irreducible, ks > j for some s < t. Thus ¢ > k > j for some k € [, 1. By
induction we prove that if ¢ > j, then C};J # 0. The converse implication is
clear from the definition.

Having verified (i), it is clear that

<Bm [Cn,'rm hn,m]>n<m in w

is a direct system in c. It follows from (ii) that for every n < minw, A([Cy m, hn,m]) =
Bo(fn.m), that is, that [C,, n, hpnm| is an fy, m,-induced morphism with respect
to identity maps. Now we apply Proposition 2.10. [J
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Theorem 3.2. FEvery strongly distributive (V, 0, 1)-semilattice is isomorphic to
the semilattice of finitely generated ideals of a unital locally matricial algebra.

Proof. Let S be a strongly distributive (V,0)-semilattice. Then there is a par-
tially ordered set () such that S is isomorphic to the semilattice of compact
elements of the lattice H(Q), that is,

S~ {(F]| F € [@Q**}.

The semilattice S has a greatest element if and only if @ = (M] for some finite
subset M of @ (i.e., if for every ¢ € @ there is m € M with ¢ < m). Put

K={FelQ*|MCF}

and P = K X w. Define an order relation on the set P by (I,n) < (J,m)if I CJ
and n < m. Observe that P is upwards directed without maximal elements.

Given a pair p = (I,,n) < q = (I;,m) in P, let f, ,: H(I,) — H(I;) de-
note the semilattice homomorphism given by f, ,((i]7,) = (i]1, for every i € I,.
The homomorphism f, , preserves 0 and 1 and

S = h_H,l <H(Ip)> fp»Q>p§q in P~

Let p = (Ip,n) € P. For each i € I, let B;; be the set of pairs (n,i), where
n = (n1,...,ns) is a sequence of natural numbers not bigger than n and i =
(i0,...,1s) is a sequence of elements of I,, such that ioc € M and 79 > -+ > i5 =1
(s is a natural number). It is clear that the set B;) is nonempty for every ¢ € I,,.

Let p = (Ip,n) < ¢ = (I;,m) be a pair of elements of P. Given i € I, and

j € I, we define C};7 to be the set of pairs (m, j) such that m = (mq,...,my) is
a sequence of natural numbers not bigger than m and j = (Jo, - - -, j¢) is a sequence
of elements of I, satisfying i = jo > --- > j; = j (¢ is a natural number) and if

i > j, then either my > n or j1 ¢ I,,.
Given pairs (n/,i') € B}, where n’ = (n1,...,n,) and i’ = (io,...,is), and
(n",i") € Cp?, where 0" = (nsy1,...,ns) and i = (is, ... i), we define

h%,q((ﬁ//7zll)7 (ﬂlvz/)) = (ﬂyi)a

where n = (n1,...,n¢) and i = (io,...,4). It is readily seen that (n,i) € B,

and so we have defined a map h%’q: UieIp (C’;lg X B]i) — Bg. On the other

hand, let (n,7), where n = (ny,...,n;) and i = (io, ..., i), be an element of BJ.
Denote by s the maximal number from the set {0,...,¢} such that i; € I, and
the pair (n',i'), where n’ = (n1,...,n,) and i’ = (io,...,is), belongs to B}s.
If s =t, put n = () and ¢/ = (i), while if s < ¢, define n” = (nsy1,...,n¢)
and i = (is,...,%;). It follows from the choice of s that if s < ¢, then either

Ngp1 > n or igyy ¢ I,. Hence (n”,7") € C7 and the correspondence (n,i) —
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((n",4"),(n',i")) defines a map hl;,qi Bl — Uier, (Cjd x BL). The map h';q
is clearly one-to-one and the composition h’;, q© h]@,q equals the identity map
on the set Uiefp (C’;:{'J X Bf,) . It follows that the map h§;7q is a bijection.

Let p = (Ip,n) < ¢ = (Ig,m) < r = (I,l) be elements of P, let i € I,,, j € I,
and k € I,.. For all (m/, j') € C}7, where m' = (ma,...,ns) and j' = (jo, ..., Js),
and (m”,j") € CI*, where m” = (myy1,...,me), " = (Js, ..., ji), define

q,m) ’ L

gik (3", (. ") = (m, j),

where m = (my,...,m¢) and j = (jo,...,jt). Notice that g]i;”;’,, is a map from
Ujer, (G x C4) to Gy Leti € I, j € Iy and k € I, satisfy i > j > k. Then

for every natural numbers s <t < u, and (n,i) € B, where n = (ny,...,ny),

i = (io,...,is), (m,j) € C]@:{;, where m' = (mgg1,...,my), j' = (Js,---,Jt), and
(m”,i,/) € Cg:ﬁa where mH = (mt—|—17 cee 7mu)7 i// = (jt7 ce 7ju)7

e gyl (", 5"), (', 3) (0, 0) = (m, j) = bl ((m",§"), b, (0, 5), (n,9))) ,
where m = (n1,...,Ms, Msy1,...,My), and j = (i, ..., %5, Js41,--.,7n). (Note

that iy = j = js.) It follows that

(Bp, [Cp,q, hP7Q]>p<q in P

forms a direct system in the category c. For every p € P define a bijection
ep: Iy — J(H(I,)) by i — (i]7,. It is clear that given p = (I,,n) < ¢ = (I, m)
in P, for every i € I, j € I, the inequality i > j (i.e., (7], 2 (j]z,) holds iff
C’g’i # (), whence the morphism [C), 4, hp 4] iS fp -induced with respect to e, €.

’q
Proposition 2.10 concludes the proof. [

4. Representation of distributive lattices

Let M be a finite set. Denote by TO(M) the set of all total orders on the set M.
For all &« € TO(M), denote by H(«) the set of all hereditary subsets (including
the empty set) of M with respect to the order «.

Let N be a subset of a finite set M and let « € TO(M). Denote by o | N the
restriction of o to the set N. For all a: a9 < -+ < a, and B: by < --- < b, €
TO(M) define a ~n [ if a; # b; implies a;,b; € N for every i € {0,...,n}. It
is clear that ~ is an equivalence relation on the set TO(M ), and we denote by
[a]y the equivalence class of the linear order «.

Lemma 4.1. Let N be a subset of a finite set M. For every o € TO(N) and
v € TO(M), there ezists a unique 3 € TO(M) satisfying B ~n v and 5 | N = a.

Proof. For B, v € N, B ~x ~ iff there exists a permutation ¢ of M fixing
every element of M ~ N such that a <g b iff o(a) <, o(b), for all a, b € M.
The conclusion easily follows. [J
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Let Q be a subset of the set P(M). Denote by C(Q) the set
{p: Q@ = P(M)|VN € Q: ¢(N) C N}.

For every ¢ € C(Q), put

Up = {e(NV)| N € 9}

Definition. Let L be a finite distributive lattice. For all a € J(L), let B¢ be
the set of all pairs («, ¢), where a € TO([a)1), ¢ € C(P(L)), and the following
properties are satisfied:

(1) [a’)L =2 Up,

(ii) for all ' > ain J(L), if [@'); € H(«), then [a)1 2 Uep.
Denote by By, the family (B¢ | a € J(L)); it is an object of b associated to the fi-
nite distributive lattice L.

Let Ly be a (0,1)-sublattice of a finite distributive lattice Ly. Let a € J(Lq)
and b € J(Lo). If b £ a, then we put C’z’:h = (). Suppose that b < a, that
is, [b)r, 2 [a)r,. Then we define C’}f’ﬁL2 to be the set of all pairs ([8']4),,,¥"),
where ' € TO([b)r,), ¥' € C(P(Lz2) ~P(L1)), and the following properties are
satisfied:

(iii) [a)z, € H (5" T ([b)z, N L1)),

(iv) [b)z, 2 LY/,

(v) for all ¥’ € J(Ls) with b < ' < a, if [)z, € H(A'), then [V')z, 2 Ui,

(Observe that if 8 ~,), ', then [a)r, € H (B [ ([b)r, NL1)) iff [a)r, €
H (B ([b)r, NL1)) and for every b’ € J(L2) with b < b’ < a, [b')r, € H(S)
iff [b')r, € H(B'); hence the definition is correct.) The following lemma is well-
known [MMT, Exercises 2.63.10].

Lemma 4.2. Let Ly be a (0,1)-sublattice of a finite distributive lattice Ly. Then
for every b € J(Ls), [b)r, N L1 = [c), for some c € J(L1).

Lemma 4.3. Let Ly be a (0,1)-sublattice of a finite distributive lattice Lo. Let
be J(Lsg). The rule

(4.2) ((18w2,%') - (@) = (8,0),

where ¥ = ' U and § € TO([b)L,) satisfies [3 ~la)r, B and B | [a)L, = «,
defines a map

Mot U (Cilu. < BR) — B,
a €J(L1)

Proof. Let a € J(Ly). If b £ a, then the set C’Z’lb’LZ is empty. Suppose that
b < a. Let (a,90) € Bf , and ([6’][G)Ll,¢’> € Cghh. Let ((3,%) be the pair
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defined by the correspondence (4.2). According to Lemma 4.1 such a pair exists
and is uniquely determined. We prove that (3,v) € B%Q. It suffices to verify
that

(i) [b)z, 2 Ui,

(i) for all ¥’ > bin J(Ly), if [0')r, € H(B), then [V')r, 2 U.

Ad (i): By the definition [b);, D Uy’. Since we have supposed that b < a,
[b)r, 2 [a)r, 2 Up. It follows that [b)r, 2 (U') U (Up) = U.

Ad (ii): Let & € H(f) for some b < b’ € J(Ly). If b’ 2 Uy’ we are done.
Assume otherwise. Then, by property (v) of C’g’lb, L, U % a, that is, V'), N
Ly 2 [a)r,. By Lemma 4.2, [V/)r, N Ly = [a')r, for some a’ € J(L;). Since
'), € H(B), we have that [a')r, € H(B | ([b)r, N L1))). By property (iii)
of C%f,Ly also [a)r, | H(B€ ([b)r, N L1))), and so either [a')r, D [a)r, or
[a)r, 2 [a')L,. According to the assumption that & £ a, only the latter case is
possible, and so a < a’ and [a')r, € H(«). By property (ii) of Bf , we have
that [a')r, 2 Uy, whence [V/)r, 2 Uyp. O

Lemma 4.4. Let Ly be a (0,1)-sublattice of a finite distributive lattice Lo. Let
be J(Ly). The map h%l,h defined by (4.2) is a bijection.

Proof. First we prove that the map h%hL2 is onto. Let (f3,7) € B%Q. Denote
by ¢ the restriction ¢ [ P(Li). By Lemma 4.2, [b)r, N L1 = [¢)r, for some
¢ € J(Ly). Since, by property (i) of BY , [b)z, 2 Ui, we have that [c)r, 2 Ugp.
The set of all o’ € J(L;) for which [a)r, € H(B [ ([b)r, N L1)) and [a’)r, 2 Uy
is nonempty (it contains at least ¢) and totally ordered with respect to 5. Let a
be the greatest element of this set. Put o = 8 | [a),. It is straightforward that
(a,¢) € B, .

Denote by v’ the restriction ¢ | (P(L2)\P(L1)). Trivially [b)r, 2 U¢’, and we
have chosen a € Ly so that [a)r, € H (G [ ([b)r, N L1)). In order to prove that
(18)1ay,, ') € C’Z’lb’LQ, it suffices to verify that [b')r, 2 Uy’ for every b’ € J(Ls)
such that b < b < a and [V/), € H(B). Let b’ € J(L2) be any such element.
Then [b)r, 2 Uy by property (iii) of B} , and since v’ < a and [a)L, 2 Up, we
have that [0')r, 2 [a)r, 2 Up, whence [b')r, 2 Uy .

By the definition,

hlz/l,Lz (([ﬁ][a)L171/}/) ’ (av @)) = (57¢)
It remains to verify that the map h%h L, is one-to-one. Let
B ia (18)1012,-) - (00 0)) = (8,0)

for some a € J(L1), ([ﬂ’][a)L2,@b') € C’Z’lb’h, and (a,p) € Bf . According
to property (iii) of C’gfLQ, l[a)r, € H(B' | ([b)r, N L1)) which is equivalent to
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la)r, € H (B ([b)r, N L1)). By property (ii) of Bf , [a')L, 2 Up for every
a < a € J(Ly) such that [a');, € H(a). Since « = 8 | [a)L,, a is the greatest
element, with respect to the total order 3, of the set of all a’ € J(L;) which
satisfy [a')r, € H (B | ([b)r, N L1)) and [a’)r, D Up. It follows that a is uniquely

determined by the pair (3,1). Since ¢ = ¢ | P(L1), a = | [a)r,, ¥ = |
(P(L2) N~ P(L1)), and [8'](a),,, = [O][a),, » the map hY 1, is one-to-one. [

Lemma 4.5. Let Ly be a (0,1)-sublattice of a finite distributive lattice Lo, let
Ly be a (0,1)-sublattice of a finite distributive lattice Ls. Then

[OL17L37 thLS] = [CL2,L37 hL27L3] © [CL1,L27 thLz]'
Proof. Let a € J(L1) and ¢ € j(L3). We set,

b,c a,b
Chirar, = U (CLQ,LS X CLl,LQ) >
beJ(Ly)

and we define a map ?L%I,Lz’L?): Ua sy (52’1127% X Bgl> — Bjf, by the rule

EEI,L2,L3 ((([’Y’][b)LQaX/> ) (WI][G)Ll’w,)) ,(a,gp)) -

By (0 1903% ) sz (1900012,50) ) - (09))

b b,
for every (a,¢) € B}, ([ﬂ’][a)Ll,w’> € Cgl,sz and ([’7/][b)L27X/> € CLQC’LS.
By the definition of the composition of morphisms in the category c,

[CL17L2,L37 hL17L27L3] = [CL2,L37hL27L3] © [CLl,Lza hL17L2]'

For every a € J(L1) and ¢ € J(L3), define amap 77", ; égf,LQ’Lg — P,

by the rule
((W] [b)Lz,X'> : <[ﬁ'] [a)lew/>) - ([’Y”][a)L17X"> :

where x” = x' U ¢ and " satisfies both v ~p, 7" and (v T [0)1,) ~[a),, B
By an argument similar to the one of the proof of Lemma 4.1, we easily see
that such a v € TO([c)L,) exists and that its properties uniquely determine
the equivalence class [v"](4), -

Let (a, ) € M(mmh,)ecﬁhﬁm(wm%wﬁeqxwLa

(h//h“)Ll’XH) = 9L Lo Ls ((hl][b)@?x') : ([ﬁl][a)L17¢/>> .
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Then, on the one hand,

RS, 1.5 (((['Y,][b)L27X/> ; <W][a)lewl>) ’(0‘790)> -
=ty (1002 X) P (8012, 0')) (0090 =
= hz2,L3 (([’)/][b)L2 ) X/> ) (5#?)) )

where ¢ = ¢’ U g, ~la)r, ', and B | [a)r, = a. Consequently,

Py (110 %) - (8,9)) = (1),

where x = X'U¢, v ~p),, ¥, andy [ [b), = 3, which implies both (v [ [b)1,) ~[a)

8 and y | [a)y, = a.
On the other hand,

Ly

it (e X (@09)) = (3,50,

where X = x" U =X U¢' Uy, ¥ ~@),, 7" and ¥ [ [a)r, = a. It follows that
~ ~b)L, 7' and since, by the definition, (v | [b)r,) ~ B’ we have that also
CARDIN) ~la)rL, G. Thusy =~ and Yy =x. O

[a)Ll

Lemma 4.6. Let Ly be a proper (0, 1)-sublattice of a finite distributive lattice Lo.
Then C’gﬁLz # 0 iff b < a, for everya € J(Ly) and b € J(Ls).

Proof. (=) It follows directly from the definition. (<) Suppose that a > b.
Let (' be any total order on the set [b), such that [a)r, € H (8" | ([b)r, N L1)).
Define ¢'(Ly) = [b)1, (it is exactly here that we use the assumption L; # Ls),
while ¢/(K) = ) for every K C Ly from P(Ly) \ P(L1). It is straightforward

that ([ﬁ/][a)L17¢'> € C’th. O

Theorem 4.7. FEvery distributive (0,1)-lattice is isomorphic to the semilattice
of finitely generated ideals of some locally matricial algebra.

Proof. Let L be a distributive (0, 1)-lattice. Denote by P the poset of all (0, 1)-
sublattices of £ ordered by inclusion. For all L; € Ly in P denote by iz, 1,
the inclusion map. If the lattice £ is finite, the assertion follows from Theo-
rem 3.1. Suppose that £ is infinite. Then P has no maximal elements and

L~ h—H>I<LlazL1,L2>L1gL2 inP-*

It follows from Lemma 4.5 that

<BL1 y [OL1,L2 ) hL17L2]>L1gL2 in P
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is a direct system in the category c. Let Ly € Lo in P. By Lemma 4.6, C’Z’lbjh # ()
iff b < a, for every a € J(L1), and b € J(Lz2). It follows that the morphism
[CrLy,1ys hiy 1,] 18 i1, 1,-induced with respect to identity maps. Finally, we apply
Proposition 2.10. [

We have proved (Theorem 3.1, Theorem 3.2, Theorem 4.5) that every distribu-
tive (V, 0, 1)-semilattice which is either

(a) countable or
(b) strongly distributive or
(c) a lattice

can be represented as the semilattice of all finitely generated ideals of some
unital locally matricial algebra. It is easy to observe how these results imply
that every distributive (V,0)-semilattice which is either countable or strongly
distributive or a lattice is isomorphic to the semilattice of finitely generated
ideals of a locally matricial algebra, now not necessarily with a unit element.
Indeed, for a semilattice S, we denote by S the semilattice obtained by adding to
S a new element 1 such that 1 > s for every s € S. If S is a distributive (V,0)-
semilattice satisfying (a), (b) or (c), then S is a (V,0,1)-semilattice satisfying
(a), (b) or (c), respectively. Then there exists a locally matricial algebra R with
Id°(R) ~ S. The algebra R has a unique maximal two-sided ideal I which itself is
a (non unital) locally matricial algebra and the semilattice of its finitely generated
two-sided ideals is isomorphic to S.

5. The I'-invariant problem

In this section we show how to solve the I'-invariant problem applying the main
results of Section 4. The idea of the use of the I'-invariants to classify uniform
modules over associative rings is due to J. Trlifaj [T1, T2] and P. C. Eklof [ET].
We outlined the idea in the Introduction, now we are going to study it in detail.

Definition. Let L be a (0, 1)-lattice.

(i) Let o be a nonzero ordinal number. A sequence A = (a,| a < 0)
of nonzero elements of L is called a cofinal strictly decreasing chain
(or c.d.c.) if

(1) ant1 < aq for all a < o,
(2) ag = A\ <p @o for all limit ordinals 3 < o,
(3) if 0 #£ a € L, then there is o < o such that a, < a.

(ii) The lattice L is called strongly dense provided L possesses a c.d.c.
The dimension of a strongly dense lattice L is the minimal length of
acd.c. in L.

Definition. Let L be a (0, 1)-lattice. Let @ < b < 1 be elements of L. Then b
is complemented over q if there is ¢ € L such that bAc=a and bV c=1.
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Definition. Let L be a strongly dense modular lattice of uncountable dimen-
sion k. Let A = (aq| a < k) be ac.d.c. in L. Put

E(A) ={a < K| 3g>qa: an is not complemented over ag} .

Denote by B(k) the Boolean algebra of all subsets of x modulo the filter generated
by closed unbounded sets. Given a subset F of x, we denote by E the element
of B(k) represented by E. The equivalence class W does not depend on a par-
ticular choice of a c.d.c. of the minimal length x [ET, Lemma 1.8]. It is called

the I'-invariant, I'(L), of the strongly dense lattice L.

Let k be a regular uncountable cardinal and let E be a subset of x ~ {(0}. Let
Lg be the lattice defined in [ET, Definition 1.12], that is, the (0, 1)-sublattice
of the lattice of all subsets of x ordered by inverse inclusion generated by in-
tervals [«, 3), where a < # < k and o ¢ E. By [ET, Theorem 1.13], Lg is
a strongly dense distributive lattice of cardinality and dimension s such that
['(Lg) = E. Denote by Ig the ideal lattice of Lg. By [ET, Theorem 1.15], I
is a strongly dense algebraic distributive lattice of dimension x whose greatest
element is compact and I'(Ig) = E.

Let L be a modular lattice. Then

{a € L| b is not complemented over a}

is a lower subset of L for every nonzero element b € L [ET, Lemma 1.4]. A nonzero
element b of the lattice L is called weakly complemented if b is complemented
over a for every a with 0 < a < b.

Definition. Let L be a strongly dense lattice of dimension x > 1.

(i) L is complementing provided L possesses a c.d.c. A = (as| o < k) such
that for all @ < 8 < K, a, is complemented over ag.

(ii) L is narrow provided that it is not complementing and L possesses
acd.c. A = (aq| @ < k) such that for all @ < 8 < K, a, is not comple-
mented over ag.

(iii) L is constricted provided that it does not have a c.d.c. A = (a,| @ < k)
such that for all @ < K, a1 is weakly complemented.

By [ET, Theorem 1.10], a strongly dense modular lattice L of dimension
K is complementing if and only if I'(L) = 0 and it is narrow if and only if
I'(L) = &. Due to [ET, Corollary 1.11], the lattice L is constricted if and only
if there exists @ > 0 in L such that a’ is not weakly complemented for every a’
with 0 < o’ < a. It follows that L is narrow provided L is constricted. On
the other hand, given an uncountable regular cardinal x, the lattice L, where
E; = {a < k| « is a limit ordinal} is a narrow but not constricted distributive
lattice of dimension x [ET, Corollary 1.14].

An R-module M is called strongly uniform provided the lattice L(M) of its
submodules is strongly dense. The dimension and the I'-invariant of a strongly
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uniform module M correspond to the dimension and the I'-invariant of the lat-
tice L(M). A strongly uniform module M is complementing, narrow, or
constricted if the lattice L(M) is complementing, narrow, or constricted. The
following problems are stated in [ET]:

[ET, Problem 2.3]|. For an uncountable regular cardinal k, which elements
of B(k), other than R, are the I'-invariant of a strongly uniform module over
a reqular ring?

[ET, Problem 2.4]. Is there a strongly uniform module of dimension k which
is narrow but not constricted?

Both the problems are solved combining Theorem 4.5 and [ET, Lemma 2.1]:

[ET, Lemma 2.1|. Let L be an algebraic lattice and k be a field. Assume that
L ~ Id(S) for a k-algebra S. Then L ~ L(M) for some right R-module M,
where R = S @i S°P. Moreover, if S is a locally matricial k-algebra, then so is

R.

Theorem 5.1. Let k be an uncountable reqular cardinal, let E be a subset of
k~{0}. Then there exists a locally matricial algebra R and a right R-module M
with L(M) ~ Ig.

In particular, all elements of B(k) are realized as the I'-invariant of a strongly
uniform module over a unit-reqular ring.

Proof. Since Ig° ~ L, compact elements of [g form a distributive lattice. By
Theorem 4.5, there exists a locally matricial algebra S with Id°(S) ~ Lg, whence
Id(S) ~ Ig. Now, by [ET, Lemma 2.1|, L(M) ~ Ig for a right R = S ® S°P-
module M, and R is a locally matricial algebra. [

Theorem 5.2. For every uncountable reqular cardinal k there exists a strongly
uniform module of dimension k, over a locally matricial algebra, which is narrow
but not constricted.

Proof. Let
E; = {a < k| a is a limit ordinal} .
Then the algebraic lattice Ig, is narrow but not constricted. By Theorem 5.1,

there are a locally matricial algebra R and a right R-module M with L(M) ~
Ig,. O
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