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Abstract. We study representations of distributive 〈0, 1〉-lattices, considered
as join-semilattices, by semilattices of finitely generated two-sided ideals of

locally matricial algebras over a field k, aiming to find a functorial solution of
the problem. We find simple examples of a finite subcategory of the category
Ld of distributive 〈0, 1〉-lattices and of a subcategory of Ld corresponding to a

partially ordered class which cannot be lifted with respect to the Idc functor.
On the other hand, we prove that there is such a lifting of every diagram in Ld

or of a subcategory Ld1 of Ld whose objects are all distributive 〈0, 1〉-lattices
and whose morphisms are 〈∨,∧, 0, 1〉-embeddings.

Introduction

This paper is a continuation of [6], where we have proved that every distribu-
tive 〈0, 1〉-lattice is, as a join-semilattice, isomorphic to the semilattice of finitely
generated ideals of a locally matricial algebra. Having discussed this result with
Friedrich Wehrung in a Summer School in Košická Belá, Slovakia, in 2003, we dealt
with the question whether it can be solved functorially, that is, whether there is
a functor from a category Ld of distributive lattices to the category of locally ma-
tricial algebras such that its composition with the functor Idc, which assigns to
a locally matricial algebra the lattice of its finitely generated ideals (see Basic con-
cepts), is equivalent to the identity functor. It is easily rejected for the category of
all distributive 〈0, 1〉-lattices, however, it still can be true if we restrict ourselves to
its suitable subcategory. One such restriction was made in [12], where F. Wehrung
asked the following:

[12, Problem 3]. Let k be a field. Does there exist a functor Φ, from distributive
〈0, 1〉-lattices with 〈∨,∧, 0, 1〉-embeddings to locally matricial algebras over k with
(unital) ring k-linear homomorphisms such that IdcΦ is equivalent to the identity?

We are going to prove that such a functor Φ exists. Moreover, we prove that
every diagram of the category of distributive lattices can be lifted with respect to
the Idc functor and we illustrate on simple examples that these results cannot be
much improved. Our proofs are based on the result that a functor to Ld can be
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lifted with respect to the Idc functor if and only if it can be lifted with respect
to the functor Θ∞ from a category D∞ to the category Ld; objects of D∞ are
projections P : X → L from a set X on a distributive 〈0, 1〉-lattice L such that the
pre-image of every element of L is infinite and morphisms are commutative squares

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

,

where f is 〈∨,∧, 0, 1〉-homomorphism, and f ′ : X1 → X2 is a map satisfying the
property (3.1) below, and Θ∞ is a functor which assigns to an object P : X → L
the distributive 〈0, 1〉-lattice L and to a morphism F = (f, f ′) the 〈∨,∧, 0, 1〉-ho-
momorphism f (Corollary 4.3). Proving the existence of a lifting of a given functor
to the category Ld with respect to the functor Θ∞ is much easier than proving
the existence of its lifting with respect to the functor Idc.

There has already appeared a number of papers related to the problem of the rep-
resentation of distributive 〈∨, 0, 1〉-semilattices as the semilattices of finitely gen-
erated ideals of a von Neumann ring, in particular, of a locally matricial algebra.
Thus, G. M. Bergman [1] has proved that every distributive 〈∨, 0, 1〉-semilattice
which either is countable or corresponds to the semilattice of all compact hered-
itary subsets of a partially ordered set is isomorphic to the semilattice of locally
matricial algebra. F. Wehrung proved that every distributive 〈∨, 0, 1〉-semilattice
is isomorphic to the semilattice of finitely generated ideals of some von Neumann
regular ring [10] but it follows from his results in [11] that we cannot require the ring
to be unit regular, so not even locally matricial. Finally, the results in [8, 9] give an
example of a distributive 〈∨, 0, 1〉-semilattice which is not isomorphic to the semi-
lattice of finitely generated ideals of any von Neumann regular ring. In [6], we have
proved that a distributive 〈0, 1〉-lattice is isomorphic to the semilattice of finitely
generated ideals of a locally matricial algebra. A different proof, based on similar
methods as the Bergman’s constructions in [1], is given by M. Ploščica in [5].

Basic concepts

Categories. Given a category C and objects a, b ∈ C, we denote by C(a, b)
the collection of all morphisms from a → b. The identity morphism at an object
a ∈ C is denoted by 1a. Recall that given a pair of functors Φ, Ψ from a category
C to a category D, a natural transformation η : Φ → Ψ is a family η = {ηa :
Φ(a) → Ψ(a) | a ∈ C} of morphisms in D such that ηb ◦ Φ(f) = Ψ(f) ◦ ηa, for
every morphism f : a → b ∈ C. A natural equivalence is a natural transformation
η such that ηa is an isomorphism for every object a ∈ C. If there is a natural
equivalence η : Φ → Ψ, we say that the functors Φ, Ψ are equivalent (via η). We
say that a functor Φ : C → D respects direct limits, if it maps the direct limit of
any directed system in C to the direct limit of the image of the directed system in
D (see [2, Definition 7.8.1]).

We are going to meet with the following obstacle resulting from the fact that
direct limits in abstract categories are not defined uniquely but uniquely up to
isomorphism. We will have defined a functor Φ : C′ → D from a full subcategory
C′ of a category C, moreover, such that every object in C will be a direct limit
of objects in C′. We will look for an expansion of the functor Φ to the whole



LIFTINGS BY LOCALLY MATRICIAL ALGEBRAS 3

category C. The most natural way to expand the functor will be to represent every
object a ∈ C as a suitable direct limit of a directed system in C′ and then to
define its image under Φ as the direct limit of the image of this directed system.
But this is the trouble since the direct limit is not defined as a single object but
rather as an isomorphism class of objects (see [2, Definition 7.5.2]). In all our cases
the category D will be a category of algebras of a finitary type, and for those,
we have a specific construction of direct limits as in [2, Lemma 8.1.10]: Given
an upwards directed partially ordered set P and a directed system 〈Ap, fp,q〉p<q in P

in D, we denote by A′ the disjoint union of the underlying sets of Ap-s, for a ∈ Ap,
b ∈ Aq we set a ∼ b provided that for some r ≥ p, q, their images in Ar coincide,
and we let A denote the set of all equivalence classes of A′ with respect to ∼, and
[a] the class containing an element a ∈ A′. For each p ∈ P , the correspondence
a 7→ [a] defines a map fp : Ap → A. Then the set A together with the collection
of the maps {fp, p ∈ P} form a set-theoretic direct limit of the directed system
above. Since we deal with algebras of a finitary type, we can define operations on
A so that the maps fp are homomorphisms in D, and 〈A, fp〉p∈P is a direct limit of
the directed system 〈Ap, fp,q〉p<q in P in D (see the proof of [2, Lemma 8.1.10]). We
will use the notation Lim−−→ for this particular direct limit, while the abstract direct

limit in the categorical sense is denoted by lim
−→

.

Definition. Let Ψ : C1 → C2, Θ : C1 → C3, and Φ : C2 → C3 be functors as in
Figure 1. We say that Ψ lifts Θ with respect to Φ provided that the composition
ΦΨ is equivalent to the functor Θ. In particular, if Θ is an inclusion functor, we
say that Ψ lifts C1 with respect to Φ.

C1
Ψ //

Θ
��8

88
88

88
8

C2

Φ
����

��
��

��η

≃
oo

C3

Figure 1

As in [7, Section 5], given a category C, a diagram of C is a functor D : I →
C, where I is a partially ordered set. Our definition of the “lifting of functors”
corresponds to the definition of the lifting of diagrams in [7, page 455].

Lattices and semilattices. For definitions and basic properties of algebraic lat-
tices, distributive lattices, and distributive semilattices we refer to [3, Section II].
Given a finite distributive join-semilattice L, we denote by J(L) the partially or-
dered set of its nonzero join-irreducible elements. For a partially ordered set P , we
let H(P ) denote the lattice of its hereditary subsets (i.e., the subsets which contain
with every element all the elements below it). We denote by

– Ld the category of all distributive 〈0, 1〉-lattices (with 〈∨,∧, 0, 1〉-homomor-
phisms),

– Sd the category of all distributive 〈∨, 0, 1〉-semilattices (with 〈∨, 0, 1〉-homo-
morphisms),

– Sfd the full subcategory of Sd of all finite distributive 〈∨, 0, 1〉-semilattices,
– Sfb the full subcategory of Sd of all finite Boolean 〈∨, 0, 1〉-semilattices.
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Algebras over a commutative field. We will make use of associative algebras
over a commutative field k (called k-algebras). We will consider only algebras with
an identity element. There is a functor Idc from the category of these algebras
to the category of 〈∨, 0, 1〉-semilattices which assigns to a k-algebra A the semi-
lattice Idc(A) of its finitely generated ideals and to a k-linear ring homomorphism
ϕ : A → B the 〈∨, 0, 1〉-homomorphism Idc(ϕ) : Idc(A) → Idc(B) defined by
the correspondence I 7→ Bϕ(I)B. It’s easy to verify that the functor Idc respects
direct limits.

A matricial k-algebra is a k-algebra of the form Mt1(k) × · · · × Mtn
(k), where

t1, . . . , tn are natural numbers and Mt(k) denotes the ring of all matrices of type
t× t over a commutative field k. A locally matricial k-algebra is a direct limit (i.e.,
a directed union) of matricial k-algebras. We denote by Mk the category of locally
matricial k-algebras (with unital k-linear ring homomorphisms), and by mk its full
subcategory of matricial k-algebras.

Some set-theoretic notation. We denote by On the class of all ordinal numbers.
For a set X let P(X) denote the set of all its subsets. Given a map f : X1 → X2,
we denote by f∗ : P(X1) → P(X2) the map sending Y 7→ {f(y) | y ∈ Y }, for
every Y ⊆ X1. Similarly, we denote by f∗ : P(X2) → P(X1) the map sending
Y 7→ {x ∈ X1 | f(x) ∈ Y }, for every Y ⊆ X2.

1. The category c revised

Objects of c are finite families B = {Bi | i ∈ I} of finite nonempty pairwise

disjoint sets. Given objects B1 = {Bi
1 | i ∈ I1} and B2 = {Bj

2 | j ∈ I2} a
premorphism from B1 to B2 is a family h = {hj | j ∈ I2} of bijections

hj :
⋃

i∈I1

(
Ci,j ×Bi

1

)
→ Bj

2,

where C = {Ci,j | i ∈ I1, j ∈ I2} is a family of (possibly) empty finite sets. The
collection of all premorphisms from B1 to B2 is denoted by c′(B1,B2). Premor-

phisms h and h̃ from B1 to B2 are equivalent, which we denote by h ∼ h̃, if there

exist maps gi,j : Ci,j → C̃i,j such that

hj(c, b) = h̃j(gi,j(c), b)

for every c ∈ Ci,j and b ∈ Bi
1, as Figure 2 displays.

⋃
i∈I1

(Ci,j ×Bi
1)

⋃
i∈I1

(gi,j×1
Bi

1

)

��

hj

))SSSSSSSSSSSSSSSSSS

⋃
i∈I1

(C̃i,j ×Bi
1)

h̃j

// Bj
2

Figure 2

It is easy to see that the relation ∼ is an equivalence on c′(B1,B2) and the mor-
phisms in c are its equivalence classes. The symbol [h] denotes the class represented



LIFTINGS BY LOCALLY MATRICIAL ALGEBRAS 5

by h. Given premorphisms h1 ∈ c′(B1,B2) and h2 ∈ c′(B2,B3), we put

Ci,k =
⋃

j∈I2

(Ci,k
2 × Ci,j

1 )

and

hk((c2, c1), b) = hk
2(c2, h

j
1(c1, b))

for all b ∈ Bi
1, c1 ∈ Ci,j

1 , and c2 ∈ Cj,k
2 . The family h = {hk | k ∈ I3} forms

a premorphism h from B1 to B3 which we denote by h2◦h1 and call the composition
of premorphisms h2 and h1. It is proved [6, Lemma 2.2.] that the equivalence class
h does not depend on the choice on the representatives of the classes h2 and h1

and so we can define the composition of morphisms in c by h2 ◦ h1 = [h2 ◦ h1].
The composition of premorphisms is depicted in Figure 3. In [6, Section 2] we
have verified that c is a category. Recall, that the identity morphism at an object
B = {Bi | i ∈ I} in c corresponds to the equivalence class of the collection of maps
hi : i×Bi → Bi, (i, b) 7→ b.

⋃
j∈I2

(
Cj,k

2 ×
(⋃

i∈I1
(Ci,j

1 ×Bi
1)

))

⋃
j∈I2

(
1

C
j,k

2

×h
j

1

)

��

≃ //
⋃

i∈I1

( ⋃
j∈I2

(Cj,k
2 × Ci,j

1 )
︸ ︷︷ ︸

Ci,k

×Bi
1

)

hk

xxppppppppppppppppppppppppppppppp

⋃
j∈I2

(Cj,k
2 ×Bj

2)

hk
2

��
Bk

3

Figure 3

To every object B = {Bi | i ∈ I} of c, we have assigned the Boolean semilattice
(P(I),∪) and given a morphism [h] ∈ c(B1, B2), the correspondence

J 7→
{
j ∈ I2 |

⋃

i∈J

Ci,j 6= ∅
}
,

where J runs over all subsets of I1, determines a 〈∨, 0, 1〉-homomorphism Λ[h] :
Λ(B1) → Λ(B2). Thus we have defined a functor Λ from the category c to the cat-
egory Sfb of finite Boolean join-semilattices. Further, given a commutative field
k, we have defined a functor A from c to the category mk so that there is a nat-
ural equivalence η : IdcA → Λ. As the consequence of [6, Lemma 2.9], we get
the following proposition.

Proposition 1.1. The functor A : c → mk lifts, via the natural equivalence η :
IdcA→ Λ, the functor Λ with respect to Idc (see Figure 4).

2. The correspondence Bo : Sfd → Sfb revised

In [6, Section 1], we have defined a correspondence Bo : Sfd → Sfb as follows. For
S ∈ Sfd we define Bo(S) to be the finite Boolean 〈∅,∪〉-semilattice P(J), where J
denotes the set of join-irreducible elements of S. Given a homomorphism f : S1 →



6 P. RŮŽIČKA

c
A //

Λ
��6

66
66

66
6 mk

Idc

����
��

��
��

η

≃oo

Sfb

Figure 4

S2 in Sfd, we define Bo(f) : Bo(S1) → Bo(S2) to be a map sending X ⊆ J(S1) to
{j ∈ J(S2) | j ≤ f(

∨
X)}. The correspondence Bo preserves the composition of

morphisms but the image of an identity morphism at S is an identity morphism at
Bo(S) iff S is Boolean.

For every S ∈ Sfd denote by uS and vS the 〈∨, 0, 1〉-homomorphisms defined by

uS : Bo(S) → S vS :S → Bo(S)(2.1)

X 7→
∨
X x 7→ {j ∈ J(S) | j ≤ x}.

Observe that for every S ∈ Sfd, uS ◦ vS = 1S , and for every homomorphism
f : S1 → S2 in Sfd, vS2

◦ f ◦ uS1
= Bo(f), that is, the following two diagrams

commute:

(2.2) S

vS   @
@@

@@
@

1S // S S1
f // S2

vS2

��
Bo(S)

uS

>>~~~~~~
Bo(S1)

uS1

OO

Bo(f)
// Bo(S2)

Lemma 2.1. Let P be an upwards directed partially ordered set without maximal
elements and let 〈Sp, fp,q〉p<q in P be a directed system in Sfd. If

〈Sp, fp〉p∈P = lim
−→

〈Sp, fp,q〉p<q in P , then

〈Sp, fp ◦ uSp
〉p∈P = lim

−→
〈Bo(Sp),Bo(fp,q)〉p<q in P .

Proof. Denote by Q the set P × {0, 1} ordered by (p, i) < (q, j) iff p < q. For
every p ∈ P set S(p,0) = Sp and S(p,1) = Bo(Sp) and for every p < q in P define
f(p,1),(q,0) = fp,q ◦ up, f(p,0),(q,1) = vq ◦ fp,q, f(p,1),(q,1) = Bo(fp,q), and f(p,0),(q,0) =
fp,q. Finally, for every p ∈ P set f(p,0) = fp and f(p,1) = fp ◦ up. It follows directly
from the commutativity of diagrams (2.2) that 〈S(p,i), f(p,i),(q,j)〉(p,i)<(q,j) in P×{0,1}

is a directed system in Sfd, and since, again due to (2.2), for every p < q in P ,

f(p,1) = f(q,0) ◦ f(p,1),(q,0) = fp ◦ up = fq ◦ fp,q ◦ up = f(q,0) ◦ f(p,1),(q,0), and

f(p,1) = fq ◦ fp,q ◦ up = fq ◦ uq ◦ vq ◦ fp,q ◦ up = fq ◦ uq ◦ Bo(fp,q) =

= f(q,1) ◦ f(p,1),(q,1),

〈S(p,i), f(p,i)〉(p,i)∈P×{0,1} is its direct limit. Since both P × {0} and P × {1} are
cofinal in P × {0, 1}, it concludes the proof. �

Lemma 2.1 coincides with [6, Proposition 1.1]. Its proof is straightforward but
it requires a number of tedious verifications. Therefore we present another shorter
proof here. The proof is based only on the commutativity of diagrams (2.2), and
so it can be generalized for a similar situation in an arbitrary category. Anyway,
we shall need it only in the presented form.
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The proof of the following lemma is simple and we leave it to the reader.

Lemma 2.2. Let C be a category with direct limits. Let P and Q be upwards di-
rected partially ordered sets, let 〈Ap, fp,q〉p<q in P , and 〈Bp, gp,q〉p<q in Q be directed
systems in C, and let 〈A, fp〉p∈P , 〈B, gq〉q∈Q be their direct limits, respectively. Sup-
pose that for every p ∈ P , there exists p⋆ ∈ Q and a homomorphism hp : Ap → Bp⋆

such that if p < q in P and p⋆, q⋆ < r in Q, then qp⋆,r ◦ hp = qq⋆,r ◦ hq ◦ fp,q.
Then there exists a unique homomorphism h : A → B such that for every p ∈ P ,
h ◦ fp = gp⋆ ◦ hp.

3. Representation of distributive lattices revised

The category D. Denote by D the category whose objects are projections p :
X → L of a set X on a distributive 〈0, 1〉-lattice L, and whose morphisms are
commutative diagrams

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

,

where p1 : X1 → L1 and p2 : X2 → L2 are objects of the category D, f ′ is
the 〈∨,∧, 0, 1〉-homomorphism, and f is a map satisfying

(3.1) f(x) = f(y) for some x 6= y in X1 =⇒ p2(f(x)) = p2(f(y)) = 0,

with obvious composition of morphisms and identities.
Denote by Θ the functor D → Sd which assigns to an object p : X → L

the lattice L and to a morphism F = (f, f ′) the 〈∨,∧, 0, 1〉-homomorphism f ′.
Denote by Df the full subcategory of D whose objects are projections of a finite

set on a finite distributive lattice, and let Θf denote the restriction Θ ↾ Df. We
shall now define a functor [Φ] from the category Df to the category c.

Given an object p : X → L in Df and an element a ∈ L, set

ap = {x ∈ X | p(x) ≥ a},

and given a morphism F = (f, f ′) in Df(p1, p2) and an element a ∈ L1, define
aF = f∗(a

p1).
For a set X denote by TO(X) the set of all total orders on X, and for each

α ∈ X denote by H(α) the set of all hereditary subsets (including the empty set)
of X with respect to the total order α. Let X be a finite set and Y a subset of X.
Denote by α↾Y the restriction of a α ∈ TO(X) to Y , and given α : α0 < · · · < αn−1

and β : β0 < · · · < βn−1, write α ∼Y β provided that for every i < n, αi 6= βi

implies that αi, βi ∈ Y . Thus we have defined an equivalence relation on the set
TO(X), and we denote by [α]Y the equivalence class represented by α.

Let f : X1 → X2 be an embedding of a finite set X1 to a finite set X2. For
α : α0 < · · · < αn−1 ∈ TO(X1) set fα : f(α0) < · · · < f(αn−1) ∈ TO(f(X1)).

Definition 3.1. Let p : X → L be an object of Df. For every a ∈ J(L) denote
by Φ(p)a the set of all α ∈ TO(ap) satisfying a′

p
/∈ H(α) for every a′ ∈ J(L) with

a < a′, and set [Φ](p) = {Φ(p)a | a ∈ J(L)}.
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Let

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

be a morphism in Df, and let a ∈ J(L1), b ∈ J(L2). If f ′(a) 6≥ b, define dom Φ(F )a,b =
∅. If f ′(a) ≥ b, then aF ⊆ bp2 , and we denote by dom Φ(F )a,b the set of all classes
[β′]aF , where β′ ∈ TO(bp2), satisfying the following properties:

(Φ1) a
F ∈ H(β′ ↾ (bp2 ∩ f∗(X1)));

(Φ2) b
′p2 /∈ H(β′), for every b′ ∈ J(L2) with b < b′ ≤ f ′(a).

Observe that the validity of (Φ1), (Φ2) does not depend on the choice of the repre-
sentative of the class [β′]aF .

As in [6], our construction makes use of the following well-known property of
lattice homomorphisms [4, Exercise 2.63.10].

Lemma 3.2. Let L1, L2 be finite distributive lattices and let f ′ : L1 → L2 be

a 〈∨,∧, 0, 1〉-homomorphism and let b ∈ J(L2). Then f ′
−1

([b)L2
) = [c)L1

for some
c ∈ J(L1).

Corollary 3.3. Let F = (f, f ′) : p1 → p2 be a morphism in Df and let b ∈ J(L2).
Then f∗(bp2) = cp1 for some c ∈ J(L1).

Lemma 3.4. Let

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

be a morphism in Df and let b ∈ J(L2). Then the correspondence

([β′]aF , α) 7→ β,

where β ∈ TO(bp2) satisfies β′ ∼aF β and β ↾ aF = fα defines a map

Φ(F )b :
⋃

a∈J(L1)

(
dom Φ(F )a,b × Φ(p1)

a
)
→ Φ(p2)

b.

Proof. Let a ∈ J(L1) and b ∈ J(L2). If f ′(a) 6≥ b, then dom Φ(F )a,b = ∅. Suppose
that f ′(a) ≥ b, and let [β′]aF ∈ dom Φ(F )a,b and α ∈ Φ(p1)

a. It follows from
(3.1) that f ↾ ap1 is one-to-one, and so we can define fα. According to [6, Lemma
4.1], there is a unique β ∈ TO(bp2) such that β′ ∼aF β and β ↾ aF = fα. We
prove that β ∈ Φ(p2)

b. Toward the contradiction suppose that there is b′ ∈ J(L2)
such that b < b′ and b′

p2 ∈ H(β). By Corollary 3.3, there is c ∈ J(L1) such that
f∗(b′

p2) = cp1 . It follows that cF = b′
p2 ∩f∗(X1), and so cF ∈ H(β ↾(bp2 ∩f∗(X1))).

Since, by (Φ1), a
F ∈ H(β′ ↾ (bp2 ∩ f∗(X1))), whence aF ∈ H(β ↾ (bp2 ∩ f∗(X1))),

either aF ⊆ cF or cF ( aF , that is, either c ≤ a, or a < c. If a < c, then β ↾aF = fα
and cF ∈ H(β ↾ (bp2 ∩ f∗(X1))) implies that cp1 ∈ H(α), which is in a contradiction
with α ∈ Φ(p1)

a. If c ≤ a, then b′ ≤ f ′(a), that is, aF ⊆ b′
p2 . By our assumption

b′
p2 ∈ H(β), and since aF ∈ H(β′ ↾ (bp2 ∩ f∗(X1))) and β ↾aF β′, it implies that

b′
p2 ∈ H(β′). This contradicts (Φ2), since then b < b′ ≤ f ′(a) and b′

p2 ∈ H(β′). �
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Lemma 3.5. The map Φ(F )b is a bijection.

Proof. First we prove that Φ(F )b is onto. Let β be an arbitrary element of Φ(p2)
b.

By Corollary 3.3, there exists c ∈ J(L1) with f∗(bp2) = cp1 , that is, bp2 ∩ f∗(X1) =
cF . The set

A = {a′ ∈ J(L1) | a
′F ∈ H(β ↾ (bp2 ∩ f∗(X1)))}

is nonempty since it contains c. Observe that the set {a′F | a′ ∈ A} is totally
ordered by inclusion and denote by a the element of A corresponding to the minimal
aF with respect to this order. Now denote by α the total order of ap1 such that
fα = β ↾ aF . Observe that α ∈ Φ(p1)

a.
We prove that [β]aF ∈ dom Φ(F )a,b. Since a ∈ A, aF ∈ H(β ↾ (bp2 ∩ f∗(X1))).

Let b′ ∈ J(L2) satisfy b < b′ < f ′(a). Then, since β ∈ Φ(p2)
b, b′

p2 /∈ H(β).
Finally we prove that the map Φ(F )b is one-to-one. Let β ∈ dom Φ(p2)

b and let
a ∈ J(L1) and α ∈ Φ(p1)

a be elements constructed above. Suppose that

Φ(F )b([β̄]āF , ᾱ) = β,

for some ā ∈ J(L1), ᾱ ∈ Φ(p1)
ā, and [β̄]āF ∈ dom Φ(F )ā,b. By (Φ1), ā

F ∈ H(β̄ ↾

(bp2 ∩ f∗(X1))), and since β̄ ∼āF β, āF ∈ H(β ↾ (bp2 ∩ f∗(X1))), hence ā ∈ A.
By the definition fᾱ = β ↾ āF , and so it follows from the properties of Φ(F )ā

that āF is a minimal element of the set {a′F | a′ ∈ A}, ordered by inclusion.
This set is totally ordered, and so ā = a. Now it is easy to see that ᾱ = α and
[β̄]āF = [β̄]aF = [β]aF . �

Corollary 3.6. Let F be a morphism in the category Df. Then Φ(F ) is a premor-
phism in the category c.

Definition 3.7. We say that a morphism

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

in Df is efficient if for every b ∈ J(L2), there exists x ∈ X2 \f∗(X1) with p2(x) = b.

Lemma 3.8. Let

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

be an efficient morphism in Df. Then dom Φ(F )a,b 6= ∅ iff b ≤ f(a), for every
a ∈ J(L1), b ∈ J(L2).

Proof. The implication “⇐” follows directly from the definition. In order to prove
the opposite one, let a ∈ J(L1), b ∈ J(L2), and suppose that b ≤ f(a). Since
the morphism F is efficient, there is x ∈ X2\f∗(X1) with p2(x) = b. Let α ∈ Φ(p1)

a.
Choose β : β0 < · · · < βn ∈ TO(bp2) such that x = β0 and αF ∈ H(β ↾ (bp2 ∩
f∗(X1))). It is straightforward that [β]aF ∈ dom Φ(F )a,b and Φ(F )b([β]aF , α) =
β. �
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Corollary 3.9. Let F = (f, f ′) : p1 → p2 be an efficient morphism in Df. Then
Λ([Φ(F )]) = Bo(f).

Lemma 3.10. Let

F : X1

p1

��

f // X2

p2

��
L1

f ′

// L2

and G : X2

p2

��

g // X3

p3

��
L2

g′

// L3

be morphisms in Df. Then [Φ(G ◦ F )] = [Φ(G)] ◦ [Φ(F )].

Proof. According to the definition of the composition of premorphisms in the cat-
egory c, for every a ∈ J(L1) and c ∈ J(L3),

dom(Φ(G) ◦ Φ(F ))a,c =
⋃

b∈J(L2)

dom Φ(G)b,c × dom Φ(F )a,b,

and (Φ(G) ◦ Φ(F ))c is a map defined by the correspondence

(([γ′]bG , [β′]aF ), α) 7→ Φ(G)c
(
[γ′]bG ,Φ(F )b([β′]aF , α)

)
.

In order to prove that [Φ(G) ◦ Φ(F )] = [Φ(G ◦ F )], we define maps ga,c from
dom(Φ(G) ◦ Φ(F ))a,c to dom Φ(G ◦ F )a,c by

ga,c ([γ′]bG , [β′]aF ) = [γ′′]aG◦F ,

where γ′′ ∈ TO(cp3) satisfies γ′′ ∼bG γ′ and γ′′ ↾ bG ∼aG◦F g′β′. Again it is easily
seen that these properties determine γ′′ uniquely.

Let a ∈ J(L1), b ∈ J(L2), and c ∈ J(L3) satisfy f ′(a) ≥ b and g′(b) ≥ c. Let
[γ′]bG ∈ dom Φ(G)b,c, [β′]aF ∈ dom Φ(F )a,b, and α ∈ Φ(p1)

a. We verify that

(3.2) (Φ(G) ◦ Φ(F ))c (([γ′]bG , [β′]aF ) , α) = Φ(G ◦ F )a,c (ga,c ([γ′]bG , [β′]aF ) , α) .

First we evaluate the left hand side of (3.2):

(Φ(G) ◦ Φ(F ))c (([γ′]bG , [β′]aF ) , α) = Φ(G)c
(
[γ′]bG ,Φ(F )b([β′]aF , α)

)

= Φ(G)c([γ′]bG , β),

where β ∈ TO(bp2) satisfies β ∼aF β′ and β ↾ aF = fα, and

Φ(G)c([γ′]bG , β) = γ,

where γ ∈ TO(cp3) satisfies γ ∼bG γ′, and γ ↾ bG = gβ.
Now we evaluate the right hand side of (3.2):

Φ(G ◦ F )a,c (ga,c ([γ′]bG , [β′]aF ) , α) = Φ(G ◦ F )a,c ([γ′′]aG◦F , α) ,

where γ′′ ∈ TO(cp3) satisfies γ′′ ∼bG γ′ and γ′′ ↾ bG ∼aG◦F gβ′, and

Φ(G ◦ F )a,c ([γ′′]aG◦F , α) = δ,

where δ ∈ TO(cp3) satisfies δ ∼aG◦F γ′′ and (g ◦ f)α = δ ↾ aG◦F .
It remains to compare γ and δ. Since f ′(a) ≥ b, aG◦F ⊆ bG. The equality

β ↾ aF = fα implies gβ ↾ aG◦F = (g ◦ f)α, and since γ ↾ bG = gβ, γ ↾ aG◦F =
(γ ↾ bG) ↾ aG◦F = (g ◦ f)α. Now γ ↾ bG = gβ and β ∼aF β′, thus γ ↾ bG ∼aG◦F gβ′,
and since γ ∼bG γ′, we conclude that γ ∼aG◦F γ′′. This together with the equality
(g ◦ f)α = γ ↾ aG◦F proves that δ = γ. �

Lemma 3.11. For every element p ∈ Df, [Φ(1p)] = 1Φ(p).
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Proof. Let

1p : X

p

��

1X // X
p

��
L

1L

// L

be the identity morphism at p in Df. Let a, b ∈ J(L). If a 6≥ b, then by the definition
dom Φ(1p)

a,b = ∅. If a ≥ b, then dom Φ(1p)
a,b is a set of all [β′]a1p satisfying

ap = a1p ∈ H(β′) and if b′ ∈ J(L) satisfies b < b′ ≤ a, then b′
p 6∈ H(β′). It

follows that a = b, and in this case β′ ∼a1p β′′ for all β′, β′′ ∈ TO(bp), whence
dom Φ(1p)

a,b is a one-element set. This proves that [Φ(1p)] = 1Φ(p). �

For an object p, resp. a morphism F of Df set [Φ](p) = Φ(p), resp. [Φ](F ) =
[Φ(F )].

Corollary 3.12. [Φ] is a functor from the category Df to the category c.

The situation we have got at the moment is illustrated on Figure 5. The arrow
Bo : Sfd → Sfb is dotted since Bo is not a functor; it only preserves the composition
of morphisms. The trapezium on the left is not commutative but it commutes if
we restrict ourselves to efficient morphisms.

Df

[Φ] //

Θf

��

c
A //

Λ

��6
66

66
66

6 mk

Idc

����
��

��
��

�

η

≃oo

Sfd
Bo

// Sfb

Figure 5

4. Lifting of the functor Θ∞ with respect to Idc

Denote by D∞ the full subcategory of the category D whose objects are projec-
tions P : X → L such that P ∗({a}) is infinite for every a ∈ L, and let Θ∞ denote
the restriction Θ ↾D∞. Given an object P : X → L ∈ D, denote by Fin(P ) the set
{p ∈ Df | p ⊆ P} of all finite sub objects of P , and for every p ⊆ q in Fin(P ) denote
by Ip,q, resp. Ip,P the inclusion morphism from p to q, resp. from p to P . Define
an order “≪” on the set Fin(P ): p≪ q if the inclusion morphism Ip,q is efficient.

Given p ∈ Df, denote by up, vp the morphisms between Θ(p) defined by cor-
respondences (2.1). Now we are going to define a functor Ψ : D → Mk. By
Corollary 3.12, [Φ] is a functor, and we define the restriction Ψ ↾ Df : Df → mk as
the composition of the functors A and [Φ].

Let P : X → L be an object in D∞. Then the set Fin(P ) partially ordered by
“≪” is upwards directed, and 〈P, Ip,P 〉p∈Fin(P ) is a direct limit of the directed sys-
tem 〈p, Ip,q〉p≪q in Fin(P ) in D. We define Ψ(P ) = Lim−−→〈Ψ(p),Ψ(Ip,q)〉p≪q in Fin(P ),

and we let Ψ(Ip,P ) be the corresponding limiting morphisms.
Let F : P1 → P2 be morphism D. For every p ∈ Fin(P1) select p⋆ ∈ Fin(P2)

so that the image of F ↾ p is contained in p⋆, and denote by Fp the morphism in
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Df(p, p
⋆) which coincides with the restriction F ↾ p. It is straightforward that if

p≪ q in Fin(P1) and p⋆, q⋆ ≪ r in Fin(P2), then

(4.1) Ip⋆,r ◦ Fp = Iq⋆,r ◦ Fq ◦ Ip,q.

Thus Ψ(Ip⋆,r)◦Ψ(Fp) = Ψ(Iq⋆,r)◦Ψ(Fq)◦Ψ(Ip,q), and, by Lemma 2.2, there exists
a unique k-linear ring homomorphism h : Ψ(P1) → Ψ(P2) such that

(4.2) h ◦ Ψ(Ip,P1
) = Ψ(Ip⋆,P2

) ◦ Ψ(Fp),

for every p ∈ Fin(P ).

Lemma 4.1. The map h does not depend on the choice of the elements p⋆.

Proof. For every p ∈ Fin(P1) select another p⋆⋆ ∈ Fin(P2) so that the image of
F ↾ p is contained in p⋆⋆, and denote by F ⋆

p the morphism in Df(p, p
⋆⋆) which

coincides with the restriction F ↾ p. Then, as above, there exists a unique k-linear
ring homomorphism h⋆ such that

h⋆ ◦ Ψ(Ip,P1
) = Ψ(Ip⋆⋆,P2

) ◦ Ψ(F ⋆
p ),

for every p ∈ Fin(P ). Now, for each p ∈ Fin(P1) select p† ∈ Fin(P2) with p⋆, p⋆⋆ ≪
p†, and denote by F †

p the morphism in Df(p, p
†) corresponding to the restriction

F ↾ p. Since

Ip⋆,p† ◦ Fp = F †
p ,

we have that

Ψ(Ip⋆,P2
) ◦ Ψ(Fp) = Ψ(Ip†,P2

) ◦ Ψ(Ip⋆,p†) ◦ Ψ(Fp) = Ψ(Ip†,P2
) ◦ Ψ(F †

p ),

whence the map h satisfies the equality

h ◦ Ψ(Ip,P1
) = Ψ(Ip†,P2

) ◦ Ψ(F †
p ),

for every p ∈ Fin(P1). Similarly we get that h⋆ satisfies

h⋆ ◦ Ψ(Ip,P1
) = Ψ(Ip†,P2

) ◦ Ψ(F †
p ),

for every p ∈ Fin(P1), and from the unicity of such a map we deduce that h =
h⋆. �

Define Ψ(F ) = h. It is straightforward that Ψ : D → Mk is a functor which
respects direct limits.

Proposition 4.2. The functor Ψ lifts Θ∞ with respect to Idc.

Proof. We have defined IdcΨ(p) = IdcA([Φ](p)), for every p ∈ Df, and so η[Φ](p)

is an isomorphism from IdcΨ(p) to Bo(Θ(p)). We abbreviate the notation setting
ηp = η[Φ](p). Let F : p1 → p2 be a morphism in Df. By Corollary 3.9, Bo(Θ(F )) =
λ([Θ(F )]), and since η : 1c ◦ [Φ] → Λ is a natural equivalence,

(4.3) Bo(Θ(F )) = ηp2
◦ IdcΨ(F ) ◦ η−1

p1
.

Let P : X → L be an object in D∞. By the definition

〈Ψ(P ), ψ(Ip,P )〉p∈Fin(P ) = Lim−−→〈Ψ(p),Ψ(Ip,q)〉p≪q in Fin(P ),

and, since the functor Idc respects direct limits, it follows that

〈IdcΨ(P ), IdcΨ(Ip,P )〉p∈Fin(P ) = lim
−→

〈IdcΨ(p), IdcΨ(Ip,q)〉p≪q in Fin(P ).
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By (4.3), the directed system 〈IdcΨ(p), IdcΨ(Ip,q)〉p(q in Fin(P ) is isomorphic, via
the family of isomorphisms {ηp | p ∈ Fin(P )}, to the directed system

〈Bo(Θ(p)),Bo(Θ(Ip,q))〉p≪q in Fin(P ).

Since P ∈ D∞, the partially ordered set Fin(P ) has no maximal elements, hence,
by Lemma 2.1,

〈Θ(P ),Θ(Ip,P ) ◦ up〉p∈Fin(P ) = lim
−→

〈Bo(Θ(p)),Bo(Θ(Ip,q))〉p≪q in Fin(P ).

The isomorphisms {ηp | p ∈ Fin(P )} induce a unique isomorphism ηP : IdcΨ(P ) →
Θ(P ) such that for every p ∈ Fin(P ):

(4.4) ηP ◦ IdcΨ(Ip,P ) = Θ(Ip,P ) ◦ up ◦ ηp.

Let F : P1 → P2 be a morphism in D∞. Select for each p ∈ Fin(P1) an object
p⋆ ∈ Fin(P2) and define the morphism Fp, as above. Then, it follows from (4.1)
that for every p ⊆ q in Fin(P1) and every r ∈ Fin(P2) with p⋆, q⋆ ≪ r,

BoΘ(Ip⋆,r) ◦ BoΘ(Fp) = BoΘ(Iq⋆,r) ◦ BoΘ(Fq) ◦ BoΘ(Ip,q),

and so, by Lemma 2.2, there is a unique homomorphism h : Θ(P1) → Θ(P2) such
that, for every p ∈ Fin(P ),

(4.5) h ◦ Θ(Ip,P1
) ◦ up = Θ(Ip⋆,P2

) ◦ up⋆ ◦ BoΘ(Fp).

Now, it follows from (4.2) that

(4.6) IdcΨ(F ) ◦ IdcΨ(Ip,P ) = IdcΨ(Ip⋆,P2
) ◦ IdcΨ(Fp).

Applying (4.4), we derive from (4.6) that

(4.7) IdcΨ(F ) ◦ η−1
P1

◦ Θ(Ip,P1
) ◦ up ◦ ηp = η−1

P2
◦ Θ(Ip⋆,P2

) ◦ up⋆ ◦ BoΘ(Fp) ◦ ηp

Composing (4.7) with ηP2
, η−1

p from the left, right, respectively, gives

ηP2
◦ IdcΨ(F ) ◦ η−1

P1
◦ Θ(Ip,P1

) ◦ up = Θ(Ip⋆,P2
) ◦ up⋆ ◦ BoΘ(Fp),

which, by Lemma 2.2, implies that ηP2
◦ IdcΨ(F ) ◦ η−1

P1
= h. Finally, since, by

the definition, F ◦ Ip,P1
= Ip⋆,P2

◦ Fp, for every p ∈ Fin(P ),

Θ(F ) ◦ Θ(Ip,P1
) ◦ up = Θ(Ip⋆,P2

) ◦ up⋆ ◦ BoΘ(Fp),

as well, and so ηP2
◦ IdcΨ(F ) ◦ η−1

P1
= h = Θ(F ). This concludes the proof. �

Corollary 4.3. Let Υ be a functor from a category C to a category Sd whose image
is in Ld. Then the functor Υ can be lifted with respect to Θ∞ if and only if it can
be lifted with respect to Idc.

Proof. (⇒) Let Φ be a functor from C to D∞ that lifts Υ with respect to Θ∞.
Then, by Proposition 4.2, IdcΨΦ = Θ∞Φ = Υ, whence the functor ΨΦ lifts Υ with
respect to Idc.

(⇐) Suppose that a functor Γ lifts Υ with respect to Idc. For an element a of
a locally matricial k-algebra A denote by 〈a〉 the two-sided ideal of A generated by
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a. Define a functor ∆ : C → D∞ as follows: ∆(C) : Γ(C) × ω → IdcΓ(C) is given
by the correspondence (a, n) → 〈a〉, for every object C ∈ C, and

∆(f) : Γ(C1) × ω

∆(C1)
��

Γ(f)×ω// Γ(C2) × ω

∆(C2)
��

IdcΓ(C1)
IdcΓ(f)

// IdcΓ(C2)

,

for every morphism f : C1 → C2 in C. The functor ∆ lifts Υ with respect to
Θ∞. �

5. Existence and non-existence of liftings

Denote by Ld1 the category whose objects are distributive 〈0, 1〉-lattices and
whose morphisms are one-to-one 〈∨,∧, 0, 1〉-homomorphisms. We apply Corol-
lary 4.3 to prove that the category Ld1 as well as every diagram in Ld has a lifting
with respect to the Idc functor. Lets start with the Ld1 case.

Theorem 5.1. The category Ld1 has a lifting with respect to Idc.

Proof. By Corollary 4.3, it suffices to find a lifting Π of the category Ld1 with
respect to the functor Θ∞. It is easy, we only have to guarantee that its image is in
D∞. Let M be an infinite set and given a distributive 〈0, 1〉-lattice L, define Π(L)
to be the map L×M → L sending (a,m) to a, and given a 〈∨,∧, 0, 1〉-embedding
f : L1 → L2, let Π(f) be the morphism

Π(f) : L1 ×M

Π(L1)
��

f×1M// L2 ×M

Π(L2)
��

L1
f

// L2

in D∞. �

As opposed to the Theorem 5.1, even a simple finite subcategory of the whole
category Ld cannot be lifted with respect to Idc, which is demonstrated in Exam-
ple 5.3. First we need the following definition.

Definition 5.2. We say that a lattice homomorphism f : L1 → L2 separates
zero if f(a) > 0 for every nonzero a ∈ L1. Observe if Idc(ϕ) separates zero for
a homomorphism ϕ : A1 → A2 in Mk then the homomorphism ϕ is one-to-one.

For an ordinal number λ denote by Cλ a well-ordered chain of the ordinal type λ
and for ordinal numbers λ and δ let fλ,δ : Cλ → Cδ be a homomorphism satisfying

fλ,δ(a) =

{
1 : a > 0;

0 : a = 0.

Example 5.3. There is not lifting of the category Cf displayed in Figure 6 with
respect to Idc.

Proof. Assume the contrary. Then, since f3,2 separates zero, Ψ(f3,2) is one-to-one.
It follows that

Ψ(f3,2 ◦ f3,3) = Ψ(f3,2) ◦ Ψ(f3,3) 6= Ψ(f3,2) ◦ Ψ(1C3
) = Ψ(f3,2 ◦ 1C3

) = Ψ(f3,2),

while f3,2 ◦ f3,3 = f3,2, which is a contradiction. �
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C3

f3,3

))

1C3

55 C3

f3,2 // C2

Figure 6

Theorem 5.4. Every diagram of Ld has a lifting with respect to Idc.

Proof. Let I be a partially ordered set and D : I → Ld a diagram of Ld. Again, by
Corollary 4.3, it suffice to find a lifting E of D with respect to Θ. Let {Mi | i ∈ I}
be a collection of infinite pairwise disjoint sets. For every i ∈ I set

Xi =
⋃

j≤i in I

D(j) ×Mj ,

and let E(i) be the map sending (a,m) ∈ D(j) ×Mj to D(j → i)(a) (observe that
the map is a projection since it includes the projection D(i)×Mi → D(i)). Finally,
to a homomorphism morphism D(i→ j) assign a morphism

E(i→ j) : Xi

E(i)
��

⊆ // Xj

E(j)
��

D(i)
D(i→j)

// D(j)

in D∞. �

The last example represents a subcategory C△ of Ld corresponding to a partially
ordered class (see Figure 7) which cannot be lifted with respect to Idc.

C2

C2

77oooooooo
C3

??����
. . . Cλ

__????
. . .

Figure 7

Example 5.5. Let On denote the class of all ordinal numbers and denote by C△

a subcategory of Ld whose objects are lattices {Cλ | 2 ≤ λ ∈ On} and whose
morphisms are {fλ,2 | λ ∈ On} and identities. The category C△ has no lifting with
respect to Idc.

Proof. Assume the contrary. Let λ be an ordinal number whose cardinality is bigger
than |Ψ(C2)|. Since fλ,2 separates zero, Ψ(f) : Ψ(Cλ) → Ψ(C2) is an embedding.
But |Ψ(Cλ)| ≥ |λ| > |Ψ(C2)|, which is a contradiction. �
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[3] G. Grätzer, “General Lattice Theory. Second edition”, new appendices by the author with
B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose,
E.T. Schmidt, S. E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998,
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