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Transcendence of e and π – Part I

Vojta Luhan

In the first part of our trilogy we will prove that e is transcendental.

1. Introduction

There are many ways to define the number e. We will use the one showing e as a sum
of the infinite series:

Definition 1. We define number e as follows:

e :=

∞∑
n=0

1

n!
.

For a later use, we also define special functions p, q and f and its integrals:

Definition 2. Let parameters i, k, n ∈ N are chosen arbitrarily. Then we define functions
p, q, f , vi and wi as follows:

• p (x) := x (x− 1) (x− 2) · · · (x− n),

• q (x) := (x− 1) (x− 2) · · · (x− n) e−x,

• f (x) := p (x)k · q (x) =
∑k+nk+n
j=k bjx

je−x for some bj ∈ Z,

• vi :=
∫ i
0 f (x) dx,

• wi :=
∫∞
i f (x) dx.

2. Few Lemmas

In this section we state and prove few Lemmas, which we will always need later, either
for proving succeeding Lemmas or The Main Theorem.

Lemma 3 (Lemma J). ∫ ∞
0

xje−x dx = j!.

Lemma 4 (Lemma Š).

w0 = (−1)n (n!)k+1 k! + c0 (k + 1)! for some c0 ∈ Z.

Lemma 5 (Lemma K).

wi = e−ici (k + 1)! for 1 ≤ i ≤ n and for some ci ∈ Z.

Lemma 6 (Lemma A).

|vi| ≤ iPkQ for some constants P,Q depending only on n.
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3. Main Theorem

Now we have stated 4 lemmas which will be used in the talk for proving the statement
of The Main Theorem. Though the proof is neither difficult, neither tricky, it is too long
to be included in the abstract. Hence only the statement will be noted:

Suppose now that the number e is algebraic. Then there exists a polynomial with
integer coefficients such that e is its root. Let

p (x) := anx
n + · · ·+ a1x+ a0, a0, . . . , an ∈ Z, an 6= 0

be such a polynomial.

Theorem 7 (The Main One). Consider polynomial p (x) as mentioned above. Then
there exist numbers R ∈ R, B ∈ R, |B| / 1 and 0 6= A ∈ Z such that

R · p (e) = A+B.

While the left side of the equation is exactly 0 (e is a root of p (x)), the right side
cannot be (because A 6= −B). Hence there cannot be any such polynomial p (x) which
means that e can’t be algebraic.

Therefore e is transcendental.
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Transcendence of e and π – Part II

Michaela Kučerová

In this part we will introduce basic definitions and theorems for the proof
of transcendence of π and e.

1. Introduction

We will start with stating important definitions from commutative algebra together
with easy lemmas.

Definition 1. A finite extension K of the field of rational numbers is called a number
field.

Definition 2. Let K be a number field. An element α ∈ K is called an algebraic integer
if there exist a polynomial

f(x) = xn + an−1x
n−1 + . . .+ a1x+ a0

with n ≥ 1 and coefficients ai ∈ Z such that f(α) = 0.

Lemma 3. Let K be a number field. An element α ∈ K is algebraic integer iff there
exists a finitely generated Z-module M 6= 0 (contained in some algebraic extension of K)
such that αM ⊂M .

This gives us the next important lemma.

Lemma 4. The set of algebraic integers in number field K is a ring.

Definition 5. We denote the ring of algebraic integers in K by IK .

Definition 6. Let K be a number field. α ∈ K. A positive integer d will be called
a denominator for α if dα ∈ IK .

Definition 7. Each embedding σ : K → C will be called a conjugate of K. If α ∈ K then
we call σ(α) a conjugate of α.

Definition 8. We define the size of a set of elements of K to be the maximum of
the absolute values (in C) of all conjugates of these elements. By the size of a vector
X = (x1, ..., xn) we shall mean the size of its coordinates. By the size of a polynomial we
shall mean the size (of a set) of its coefficients. We denote size with ‖ · ‖.

The next lemma will enable us to estimate the size of solution of linear equations over
integers.

Lemma 9 (Siegel). Let

a11x1 + · · ·+ a1nxn = 0...
ar1x1 + · · ·+ arnxn = 0

be a system of linear equations with integer coefficients aij , and n > r. Let a be a number
A ≥ 1 such that |aij | ≤ A for all i, j. Then there exists an integral, non-trivial solution
with

|xj | ≤ 2(3nA)r/(n−r).
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Now we will generalize the previous lemma for system of linear equations over an al-
gebraic integers.

Lemma 10 (Siegel). Let K be a number field. Let

α11x1 + · · ·+ α1nxn = 0...
αr1x1 + · · ·+ αrnxn = 0

be a system of linear equations with coefficients in IK , and n ≥ r. Let A be a number
such that ‖αij‖ ≤ A for all i, j. Then there exists a non-trivial solution X in IK such
that

‖X‖ ≤ 2(CnA)r/(n−r).

Where C is a constant depending only on K.

It is straightforward to generalize the previous lemma for system of linear equations
with coefficients in K.

2. Few definitions from the complex analysis theory

The rest of the lecture we will spend on stating various definitions and facts from the
complex analysis theory.

Definition 11. A complex function that is complex differentiable at every point in a re-
gion is called analytic function.

Definition 12. If a complex function is analytic at all points of the complex plane C,
then it is said to be entire.

Definition 13. Meromorphic function is a function f(z) of the form f(z) =
g(z)
h(z)

where

g(z) and h(z) are entire functions with h(z) 6= 0.

Definition 14. An entire function f is said to be of order ≤ ρ if there is a constant
C > 1 such that for all large R we have

|f(z)| ≤ CR
ρ
,

whenever |z| < R.
A meromorphic function f is said to be of order ≤ ρ if it can be expressed as a quotient

of entire functions of order ≤ ρ.
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Transcendence of e and π – Part III

Milan Boháček

In this part we will finally prove the transcendence of π (and countably
many other transcendental numbers).

1. Definitions and lemmas

But, first we will continue with definitions.

Definition 1. Point a ∈ C is called a pole of analytic function f iff limz→a f(z) = ∞
and there exists p ∈ N such that limz→a(z − a)pf(z) ∈ C.
Fact 1 (Maximum Modulus principle). Let f be a non-constant analytic function on a con-
nected open set U ⊆ C. Then |f | cannot attains maximum in U , i. e. there exists no a ∈ U
such that

|f(a)| ≥ |f(z)|
for all z ∈ U .

Definition 2. A derivation on the polynomial ring K[T1, . . . , TN ] is an additive homo-
morphism

D : K[T1, . . . , TN ]→ K[T1, . . . , TN ],

D(P +Q) = D(P ) + D(Q),

also satisfying Leibniz condition

D(PQ) = D(P )Q+ PD(Q).

Lemma 3. Let K be a number field. Let f1, . . . , fN be functions analytic on a neighbor-
hood of a point w ∈ C, and assume that D = ∂

∂z
maps the ring K[f1, . . . , fN ] into itself.

Assume that fi(w) ∈ K for all i. Then there exists a number C having the following
property.

Let P (T1, . . . , TN ) be any polynomial with coefficients in K, of degree ≤ r. If we set
f := P (f1, . . . , fN ), then we have for all positive integers k,

‖Dkf(w)‖ ≤ ‖P‖rkk!Ck+r.

Furthermore, there is a denominator for Dkf(w) bounded by den(P )Ck+r.

2. Main theorem

This theorem states that algebraically independent meromorphic functions are some-
what limited in number of values lying in K.

Theorem 4. Let K be a finite extension of the rational numbers. Let f1, . . . , fN be
meromorphic functions of order ≤ ρ. Assume that the field K(f1, . . . , fN ) has transcen-

dence degree ≥ 2 over K, and that the derivative D = ∂
∂z

maps the ring K[f1, . . . , fN ]
into itself. Let w1, . . . , wm be distinct complex numbers not lying among poles of the fi,
such that

fi(wν) ∈ K
for all i = 1, . . . , N and ν = 1, . . . ,m. Then m ≤ 32ρ[K :Q].

The proof uses estimates obtained from previous lemmas and some global arguments
involving Maximum Modulus principle which will be shown at the lecture.
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3. Corollaries

And finally we will reap what we have sown.

Corollary (Hermite-Lindemann). If α is algebraic (over Q) and α 6= 0, then eα is
transcendental. Hence π is transcendental.

Proof. Let K = Q(α, eα) be a number field. It is easy to see that functions f1 = ez , f2 = z
(which complies with assumptions of the Main theorem) takes on algebraic values at all

w1 := α,w2 := 2α, . . . , wm := mα,

for any m ∈ N. But according to the Main theorem m ≤ 32[K :Q]. So Q(α, eα) is not
finite extension of Q. So at least one of α, eα is transcendental.

Finally α = iπ is transcendental because eiπ = −1 and so π is transcendental. �

Corollary (Gelfond-Schneider). If α is algebraic, α 6= 0, 1 and if β is algebraic and
irrational then αβ = eβ logα is transcendental.

This gives us countably many transcendental numbers such as p
√
p for p prime.
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p-adic numbers – Part I

Petr Nižnanský

In the first talk about p-adic numbers, we remind a few definitions and show all non-
equivalent norms in Q.

Definition 1. Let X be a set. The function d : X ×X → [0,∞) is a metric on X if the
following holds:

• d(x, y) = 0 ⇐⇒ x = y.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.
A set X together with metric d is called a metric space.

Definition 2. Let F be a field. The function ‖ ‖ : F → [0,∞) is a norm on F if the
following holds:

• ‖x‖ = 0 ⇐⇒ x = 0.

• ‖x · y‖ = ‖x‖ · ‖y‖.
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 3. Let p ∈ P be any prime number (P is set of all prime numbers). The p-adic
valuation (or p-adic order) is defined as νp : Z→ N ∪ {∞}

νp(x) =

{
max {v ∈ N0 | pv divides x} if x 6= 0

∞ if x = 0.

We can naturally extend p-adic valuation on rational numbers Q as follows: let x = a/b
then νp(x) = νp(a)− νp(b).

Examples 4. ν5(35) = 1, ν2(97) = 0, ν3(27) = 3, ν2(3/8) = −3.

The p-adic valuation gives us tool to define norm on Q as follows:

|x|p =

{
1

pνp(x)
if x 6= 0

0 if x = 0.

To defined equivalent norms we need to remind that sequence {a1, a2, . . .} is Cauchy
if ∀ε > 0, ∃N ∈ N, ∀m,n > N : d(am, an) < ε.

Definition 5. Two metrics d1 and d2 on a set X are equivalent if a sequence is Cauchy
with respect to d1 if and only if it is Cauchy with respect to d2 and two norms are
equivalent if they induce equivalent metrics.

Theorem 6 (Ostrowski). Every nontrivial norm ‖ ‖ on Q is equivalent to | |p for some
prime p or is equivalent to the absolute value | |.
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p-adic numbers – Part II

Hana Holmes

In the second talk of the cycle we will use the defined metric | |p to construct the

field of p-adic numbers. We will define p-adic integers and show that there is a unique
representation for each of them. In the end we will prove Hensel’s lemma for p-adic
numbers, which tells us how to find roots of polynomials with p-adic integer coefficients.

Definition 1. Let us have a set of sequences in Q that are Cauchy with respect to | |p.

• sequences {ai} and {bi} are equivalent if |ai − bi|p
i→∞→ 0

• for the equivalence class a we define |a|p = limi→∞ |ai|p
Definition 2. The operations on the equivalence classes are defined naturally. Let (ai) ∈
a and (bi) ∈ b be any representatives of their classes:

• a ∗ b = [{ai ∗ bi}] where * is multiplication or addition,

• −a = [{−ai}],

• 1
a

=
[{

1
āi

}]
where āi = pi if ai = 0, otherwise āi = ai.

Lemma 3. The set of equivalence classes of Cauchy sequences is a field with multi-
plication, addition and inverses defined as above. We call this the field Qp of p-adic
numbers.

Lemma 4. Every equivalence class a ∈ Qp for which |a|p ≤ 1 has exactly one represen-

tative Cauchy sequence of the form {ai} for which

(1) 0 ≤ ai ≤ pi for i ∈ N,

(2) ai ≡ ai+1 (mod pi) for i ∈ N.

Corollary. For each equivalence class a where |a|p ≤ 1 we can write the elements of the

sequence in the form ai = b0 + b1p+ · · ·+ bi−1p
i−1 where each digit bi ∈ {0, 1, . . . , p− 1}

is the same for every aj . Zp = {a ∈ Qp : |a| ≤ 1} form a ”subring” of p-adic integers.
Z∗p = {a ∈ Qp : |a| = 1} is a set of p-adic units.

Lemma 5. If x ∈ Q and |x|p ≤ 1, then for any i there exists an integer α ∈ Z such that

|α− x|p ≤ p−1. The integer α can be chosen from the set
{

1, 2, . . . , pi − 1
}

.

Theorem 6 (Hensel’s lemma). Let F (x) = c0 + c1x+ · · ·+ cnxn be a polynomial whose
coefficients are p-adic integers. Let F ′ (x) = c1 + 2c2x + · · · + ncnxn−1 be the formal
derivative of F (x). Let a0 be a p-adic integer such that F (a0) ≡ 0 (mod p) and F (a0) 6≡
0 (mod p). Then there exists a unique p-adic a integer such that

F (a) = 0, and a ≡ a0 (mod p).
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p-adic numbers – Part III

Adam Ráž

1. Triangulation of a square

We can use the p-adic valuation for an interesting proof of the following Triangulation
of a square theorem. For that it’ll be helpful to prove a coloring lemma and a coloring
theorem, which use our specifically defined coloring of Q2.

It is defined the following way:

Definition 1. A point (x, y) is colored

 red if |x|p < 1 & |y|p < 1 ,
green if |x|p ≥ 1 & |y|p ≤ |x|p ,
blue if |y|p ≥ 1 & |x|p < |y|p .

Lemma 2 (Coloring lemma). For any red poing (xr, yr), green point (xg , yg) and blue
point (xb, yb) in Q2 it holds: ∣∣∣∣∣∣

 xr yr 1
xg yg 1
xb yb 1

∣∣∣∣∣∣
p

≥ 1

Theorem 3 (Coloring theorem). The set Q2 can be colored (and is by our coloring) with
exactly three colors such that any line contains exactly two colors.

Theorem 4 (Triangulation of a square). It is impossible to divide a square into an odd
number of triangles of equal area.

2. Norm extension on Qp

We’ll study some basic properties of finite algebraic extensions of Qp. In order to
extend the p-adic norm, we will use the following definition, which is used in a proof of
the next theorem.

Definition 5. Let K = Qp[α] be a finite extension of a field Qp generated by an element
α which satisfies a monic irreducible equation

0 = xn + a1x
n−1 + . . .+ an−1x+ an, ai ∈ Qp.

Then we define a p-adic norm on α by

|α|p := |Πni=1αi|
1/n
p , where the αi are the conjugates of α over Qp.

Theorem 6. Let K be a finite extension of Qp. Then there exists a unique field norm
on K which extends the norm | |p on Qp.
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Numeration Systems – Complex Basis

Ondřej Väter

We usually use the positional notation to record numbers because it makes arithmetic
easy. Typically, the base used is a positive integer n > 1 and digits are {0, . . . , n− 1}.

In the first talk of the series, we show what opportunity brings the positional notation,
if we use a complex number as the base. We show what a number system with a complex
base looks like. We also mention theorems which tell us how to choose base and digits
in this case.

Theorem 1. Let β = −1 + i ∈ C. Every z ∈ Z[i] := {a + ib; a, b ∈ Z} can be uniquely
written in the form:

z =
∑n

k=0
zk · βk where zk ∈ {0, 1}

Definition 2. Let β be a base and A ⊆ C be a set of digits. If

z =
∑n

k=0
zk · βk +

∑−1

k=−m
zk · βk where zk ∈ A

instead of the sum we use the notation:

(z)β = znzn−1 . . . z0 • z−1z−2 . . . z−m

where • is called the fraction dot.

Definition 3. We denote the set of numbers which have finite a number of digits as
Fin(β).

Theorem 4. Let β = −1 + i and A = {0, 1}, then Fin(β) is a dense set in C.

Theorem 5. We define the Euclidean norm on Z[i]: N(z) = zz. Let any z, β ∈ Z[i] and
β = a + bi, gcd(a, b) = 1 . Then there are y ∈ Z[i] and r ∈ {0, . . . , N(β) − 1} such that
z = β · y + r.

Theorem 6. Let β = a + bi ∈ Z[i], gcd(a, b) = 1 and let A = {0, . . . , N(β) − 1}. Then
every z ∈ Z[i] can be written in the form:

z =
∑n

k=0
zk · βk where zk ∈ A

if and only if β = −n± i where n ∈ N.

Algorithm 7 (Greedy). Let R be a Euclidean domain with linear ordering.

Input: β, a ∈ R
Output: (a)β = an . . . a0

while a 6= 0 do
k ← max{n ∈ N;βn ≤ a}
ak ← a÷ βk
a← a mod βk

end while
return (a)β = anan−1 . . . a0

12



Theorem 8. Let β ∈ C, |β| > 1 be a base and A ⊂ C be a finite set of digits. Let V ⊂ C
be a bounded set such that 0 lies in the interior of V . If:

β · V ⊂ V +A := {v + a; v ∈ V, a ∈ A}

then every z ∈ C can be written in the form:

z = zk · βk + zk−1 · βk−1 + zk−2 · βk−2 + . . .

where ∀j ≤ k, zj ∈ A.

Note. A redundant number system is a number system with more digits than is necessary
to represent every number. Numbers in such a system usually have multiple representa-
tions. Redundant systems allow for faster arithmetics (with parallel computing).
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Numeration systems – Irrational basis

Adéla Skoková

This talk is about numeration systems using the irrational basis β. The greedy search
from the previous part is not restricted to β coefficients in Z. In the case of the irrational
basis β the digits for any number will be 0, 1, . . . , bβc.

Definition 1. Let β > 1. The set of β-integers with a finite representation is

Zβ =
{
±x | inR, x ≥ 0, (x)β = xkxk−1 . . . x0•

}
.

The set of all finite numbers with basis β will be defined as

Fin(β) =
⋃
n∈N

1

βn
Zβ .

Example. Let us choose as the basis of our system the golden ratio β = 1+
√

5
2

. It is a

root of the quadratic equation x2 = x+ 1, so βl = βl−1 + βl−2. The digits of our system

will be 0 and 1 because bβc = b 1+
√

5
2
c = 1.

Observe that:

• (1)β = 1•
• (2)β = 10 • 01

• (3)β = 11 • 01

• (4)β = 101 • 01

• (5)β = 110 • 1001

Lemma 2. If the basis β /∈ Z then Zβ + Zβ 6⊂ Zβ .

In number theory, an algebraic integer is a complex number that is a root of some
monic polynomial with coefficients in Z. The degree of an algebraic integer is the degree
of its minimal polynomial. An algebraic integer α of degree n is a root of an irreducible
monic polynomial P (x) of degree n with integer coefficients, which is a minimal polynomial
of α. The other roots of P (x) are called the conjugates of α.

Theorem 3 (C. Frougny and B. Solomyak). Let β > 1 be such that Fin(β) + Fin(β) ⊂
Fin(β). Then β is an algebraic integer all his conjugates have absolute value less than 1.

The proof can be found in an article Finite beta-expansions by C. Frougny and B.
Solomyak.

Definition 4. If β > 1 is a root of a rational polynomial P (x) and all other roots are
real or complex numbers of absolute value less than 1, then β is called a Pisot number.

Lemma 5. For every Pisot number β exists a λ 6= 0 such as

lim
n→∞

||λβn|| = 0,

where ||x|| means the distance to the closest integer.
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If a basis β is a Pisot number, than the set of β-integers is finite and there exists
only a finite number of various spaces between the following numbers. Furthermore, it is
possible to find a rule for length of these spaces.

Definition 6. Tiling of a space Rn is given by finite set D of tiles, which can fill the space
without gaps and covering each other.

We will focus on Pisot numbers 1 ≤ β ≤ 2 for the rest of the talk.
Let R be the set of all finite binary sequences produced by the greedy algorithm on Z.

Definition 7. If w ∈ R is a finite sequence of digits, we denote by T•w the set

T•w =
{
x ≥ 0 | (x)β = xkxk−1 . . . x0 • w

}
.

In particular, if w is an empty sequence, then T• = Zβ ∩ [0,∞) .
Let γ be a root of P (x) conjugate to β. Then the fields Q(β) and Q(γ) are isomorphic.

Denote the isomorphism by σ. This isomorphism changes basis from β > 1 to γ, the norm
of γ is less than 1. Observe that σ is the identity mapping on Q.

Having chosen γ, we have the bounded set (T•)′ =
{
x′ = σ(x) |x ≥ 0, x ∈ Zβ

}
⊂ C.

The closure of (T•)′ is called the central tile D• belonging to the Pisot number β. Tiling
of the whole Gauss plane is defined by tiles given by w ∈ R:

D•w = {x′ = σ(x) |x ∈ T•w}.

The bar means a closure in classical metrics in C. This tiling has following properties:

• Any tile D•w is a copy of one of tiles D•, D•1 or D•11.

• Any tile multiplied by 1
γ

could be composed of tiles D•, D•1 and D•11.

Pisot unit is a Pisot number which is a root of some polynomial with integer coefficients
and the absolute coefficient equal to ±1.

Theorem 8 (Tiling). Let β > 1 be a Pisot unit of degree d ≥ 2. Then the sets D•w
form tiling of a space Rd−1 if and only if Fin(β) + Fin(β) ⊂ Fin(β).

In the case of D•w can tile a space, the number of various tiles is at least equal to
the degree of β. This number depends on the set R.

The difference between our tiling and the tiling from the previous talk, where β = i−1,
is that our tiling is aperiodic: Our tiling is not invariant under translations.
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Numeration systems – Quasicrystals

Josef Dvořák

A “crystal” is intuitively understood as an organization of matter which shows a certain
rigid structure, namely strong symmetry; all possible symmetries of crystals were char-
acterized at the end of 19th century. However, in 1982 structures showing “prohibited”
symmetries were discovered and therefore named quasicrystals.

We will be interested in a certain class of subsets of Rd which have quasicrystalline
properties, so called “cut & project”-sets (C&P-sets). Properties of these sets can be
described using methods of combinatorics on words. Finally, we connect the topic of the
previous talks with physics, namely β-expansions of numbers with C&P-words and sets.

Theorem 1 (The Crystalographic Restriction Theorem). The only symmetries of a crys-
tal are of orders 1, 2, 3, 4, and 6.

Definition 2. A lattice in Rd is the set {a1x1 + . . .+ adxd ai ∈ Z}, where the vectors
x1, . . . , xd are linearly independent.

Definition 3. Write Rd as a direct sum of two subspaces V1 ⊕ V2 with the natural
projections π1, π2. Let Ω be a bounded subset of V2 and let L be a lattice in Rd such
that π1 is monic on L and π2 (L) is dense in V2. A cut & project set is the set

Σ (Ω) := {π1 (x) |x ∈ L and π2 (x) ∈ Ω} .

The most important case for our purposes will be d = 2, so we can simplify the defi-
nition of C&P -set as follows:

Definition 4. Let ε and η be irrational numbers and let Ω ⊂ R be a bounded interval.
Then a one-dimensional C&P -set is the set

Σε,η (Ω) = {a+ bη | a, b ∈ Z, a+ bε ∈ Ω} .

One dimensional C&P -sets are unexpectedly nice:

Theorem 5. For each Σε,η (Ω) there exist positive numbers ∆1, ∆2 ∈ Z [η] depending
only on η, ε, |Ω| such that the distances between adjacent points of Σε,η (Ω) take values in
{∆1,∆2,∆1 + ∆2}.

Furthermore, we can (up to scaling) restrict our attention to only certain ranges of pa-
rameters η, ε, |Ω|
Theorem 6. For each η 6= ε,Ω there exist η, ε,Ω satisfying

ε ∈ (−1, 0) , η > 0,max (1 + ε,−ε) < |Ω| ≤ 1

such that Σε,η (Ω) = sΣε,η
(
Ω
)

for some s ∈ R.

For the purpose of describing Σε,η (Ω) in a different way, we need the following property
of quadratic Pisot numbers:

Lemma 7. Each quadratic Pisot unit can be expressed as the positive root of a quadratic
equation β2 = mβ + 1 for m ≥ 1 or β2 = mβ − 1 for m ≥ 3.

Finally we can formulate the theorem which connects the theory of C&P -sets and the
theory of number systems:

Theorem 8. The positive part of the set Zβ coincides with the positive part of C&P -set
Σε,η (Ω) if and only if β is a quadratic Pisot unit.
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The set of arithmetical sets is not arithmetical

Tomáš Jakl

Cohen introduced forcing in 1963 to prove independence of the Axiom of choice and
the Continuum hypothesis from Zermelo–Fraenkel set theory. From a topological point
of view the construction of generic filter in the method of forcing is nothing more than
Baire category theorem.

In this talk I will show how arithmetical forcing (one of the most transparent kinds
of forcing) can be used for recursion theoretic proof of theorem that the set of all arith-
metical sets is not arithmetical.

1. Preliminaries

Definition 1. Let L be the first-order language with a constant n̄ for each n ∈ N, an unary
relation ‘· ∈ X’ and function and relation symbols +, ×, <, =.

Given a formula ϕ of L, ϕ is true for A ⊆ N (A |= ϕ) is inductively defined as follows:
A |= ϕ is atomic without ‘· ∈ X’ ⇐⇒ ϕ is true in N
A |= n̄ ∈ X ⇐⇒ n ∈ A
A |= ¬ψ ⇐⇒ not A |= ψ
A |= ψ0 ∨ ψ1 ⇐⇒ A |= ψ0 or A |= ψ1

A |= (∃x)ψ(x) ⇐⇒ for some n ∈ N A |= ψ(n̄).

Cohen’s idea was based on intuition that the truth can be approximated by a finite
information. For example if some finite string σ of 0s and 1s tells us that ϕ is true, then
A |= ϕ for all A ⊇ σ (we identify a set and its characteristic function).

Definition 2. Given a formula ϕ of L, σ forces ϕ (σ  ϕ) is inductively defined as follows:
σ  ϕ is atomic without ‘· ∈ X’ ⇐⇒ ϕ is true in N
σ  n̄ ∈ X ⇐⇒ σ(n) = 1
σ  ¬ψ ⇐⇒ (∀τ ⊇ σ)(τ 6 ψ)
σ  ψ0 ∨ ψ1 ⇐⇒ σ  ψ0 or σ  ψ1

σ  (∃x)ψ(x) ⇐⇒ for some n ∈ N σ  ψ(n̄).

Definition 3. For given A ⊆ N we say A forces ϕ (A  ϕ) if for some finite σ ⊆ A,
σ  ϕ.

Definition 4. A is n-generic if for all sentences ϕ ∈ Σn either A  ϕ or A  ¬ϕ. A is
ω-generic if the same happens for all sentences of L.

Lemma 5 (Forcing = Truth for generic sets). A is n-generic iff for any sentence ϕ ∈
Σn ∪Πn, A |= ϕ iff A  ϕ.

Definition 6. A set A ⊆ N is defined by a formula ϕ if n ∈ A ⇐⇒ ∅ |= ϕ(n̄). A set A
is said to be arithmetical if it is defined by some formula of L.

2. Demonstration of the method

Theorem 7. There is a n-generic set defined by Σn+1 formula.

Proof idea. (1) We have Σ0 enumeration of L sentences: ψ0, ψ1, . . . .

(2) For each ψi we Σn+1-find a string σi extending σi−1 such that σi  ψi or
σi  ¬ψi.
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(3)
⋃
i σi is a characteristic function of a n-generic.

�

The proof goes the same way as the proof of Baire category theorem (theorem says: in
a complete metric/locally compact Hausdorff space a countable intersection of open dense
sets is dense).

The sets [σ] = {A ⊆ N : A ⊇ σ} form a basis of product topology of 2ω . Since 2ω is
locally compact Hausdorff space and the fact that the set Oϕ = {A : A  ϕ or A  ¬ϕ}
is open and dense in 2ω there is a n-generic set in

⋂
ϕ∈Σn

Oϕ.

Theorem 8. The set of arithmetical sets is not arithmetical.

3. Conclusion

In Recursion theory, in order to force desired properties it often suffices to find some
generic set, on the other hand in Set theory one has to construct a model “along” con-
structed generic filter which will then have desired properties. Model construction then
makes the method much more difficult.
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Primary and cyclic decomposition theorems – Part I

Vojta Tůma

This part of the series introduces/reviews basic notions and concludes with a proof of
the Primary Decomposition Theorem, which serves as a tool for proving the central result
for this series – the Cyclic Decomposition Theorem.

In this series T denotes a linear operator on a finite dimensional vector space V over
a field F. In order to understand some general mysterious operator T , we would like to
decompose it into parts that are easier to comprehend. First of all, we investigate when
does T vanish:

(1) the characteristic polynomial of T is the polynomial det(xI − A) (where A is
a matrix that represents T )

(2) a polynomial p annihilates T if p(T ) = 0,

(3) the minimal polynomial of T is the monic polynomial that annihilates T and has
minimum degree over all such polynomials,

Decomposition of the minimal polynomial of T allows us to decompose the underlying
space V into parts such that T does not jump between them:

(1) projection is an operator E such that E2 = E,

(2) subspace W is T -invariant if T (W ) = W ,

(3) let V = V1 + V2 + · · ·Vk such that V1, V2, . . . , Vk are independent, then V is

a direct sum of V1, V2, . . . , Vk, denoted by V =
⊕k
i=1 Vi.

The result of this talk gives a transparent decomposition of T :

Theorem 1 (Primary Decomposition Theorem). Let the minimal polynomial MT (X) of
a linear operator T equal p1(X)m1 ·p2(X)m2 · · · ps(X)mk , where p1(X), p2(X), . . . , ps(X)
are distinct irreducible polynomials. Put Vi = ker pi(T )mi . Then

(1) each Vi is T -invariant,

(2) for Ti = T |Vi the minimal polynomial MTi (X) equals pi(X)mi ,

(3) V =
⊕s
i=1 Vi.

As a teaser, we state the central result of this series.

Theorem 2 (Cyclic Decomposition Theorem). There are vectors v1, v2, . . . , vr of V with
T -annihiators fj(X) = fvj (X) so that

(1) V = Z(v1)⊕ Z(v2)⊕ · · · ⊕ Z(vr),

(2) fj+1(X) | fj(X), j = 1, 2, . . . , r − 1,

(3) vr 6= 0.

Furthermore, the listed properties uniquely determine r and the T -annihilators.
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Primary and cyclic decomposition theorems – Part II

Alexander Slávik

The aim of this part is simply to give an elementary proof the main result, the Cyclic
Decomposition Theorem. Our setting throughout the whole text and the lecture is fol-
lowing: V is a finite-dimensional vector space over a field F, T : V → V a linear operator
and mT its minimal polynomial. Further, for any v ∈ V let Z(v) = {f(T )v | f ∈ F[x]}
(the cyclic subspace generated by v) and denote fv the monic polynomial of minimal
degree satisfying f(T )v = 0 (the T -annihilator of v).

In the proof we employ the following observations.

Lemma 1. Z(v) = {f(T )v | f ∈ F[x], deg f < deg fv}, and {v, Tv, . . . , T (deg fv)−1v} is a
basis of Z(v).

Lemma 2. Let p be an irreducible factor of fv of degree d. Then {v, Tv, . . . , T d−1v} is a
linearly independent set, and if Y (v) = 〈v, Tv, . . . , T d−1v〉, then Z(v) = Y (v)⊕Z(p(T )v).

Lemma 3. If u, v ∈ V have relatively prime T -annihilators fu, fv, then Z(u + v) =
Z(u)⊕ Z(v) and fu+v = fufv.

Theorem 4 (Cyclic Decomposition Theorem). Under the conditions above, there are
vectors v1, v2, . . . , vr ∈ V with T -annihilators fj = fvj so that

(1) V = Z(v1)⊕ Z(v2)⊕ · · · ⊕ Z(vr),

(2) fj+1 | fj , j = 1, 2, . . . , r − 1,

(3) vr 6= 0.

Furthermore, the listed properties uniquely determine r and the T -annihilators.

Proof strategy. The first step is to prove the statement in the case mT = pk for some
k ∈ N, p ∈ F[x] being irredicuble of degree d. The proof proceeds by induction on dimV .

We construct a suitable T -invariant subspace V1 ⊆ V containing Im p(T ) with d-
dimensional complement of the form Y (v) = 〈v, Tv, . . . , T d−1v〉. By induction hypothesis,
V1 can be decomposed in the fashion described in the statement. Now it suffices to “repair”
the cyclic subspace decomposition in such a way that Y (v) fits into it.

The general case, whenmT is a product of powers of irreducible polynomials, is handled
by the Primary Decomposition Theorem. This allows us to use the already prooved fact
on T -invariant subspaces corresponding to the irreducible polynomials, and the proof is
finished by applying Lemma 3.
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Primary and Cyclic Decomposition Theorems – Part III

Marcel Šebek

In the following, V will be a finite-dimensional vector space over F with a linear
operator T . Furthermore, m and c will be the minimal and characteristic polynomial
of T , respectively.

Proposition 1. Let W be a T -invariant subspace of V . Then W is T -admissible, if and
only if W has a T -invariant complementary subspace.

Proposition 2. Then minimal and characteristic polynomial of T coincide, if and only
if T has a cyclic vector, i. e., V = Z(α, T ) for some α ∈ V .

Theorem 3 (Generalized Cayley-Hamilton Theorem). The following holds:

(1) m divides c.

(2) m and c have the same prime factors, except for multiplicities.

(3) Let m = fr11 . . . f
rk
k be a prime factorization. Then c = fd11 . . . f

dk
k where di is

the nullity of fi(T )ri divided by deg fi.

Definition 4. A matrix is in the rational form if it is block diagonal, matrices on the
diagonal are companion matrices of some polynomials p1, . . . , pk, and pi+1 divides pi for
i = 1, . . . , k − 1. The polynomials p1, . . . , pk are called invariant factors.

Theorem 5. Each matrix is similar to a unique matrix in the rational form.

Definition 6. A k × k matrix of the form

J(λ) =


λ 0 · · · 0
1 λ · · · 0
...

. . .
. . .

...
0 · · · 1 λ


is called an elementary Jordan matrix with characteristic value λ.

Definition 7. A matrix is said to be in the Jordan form if it is block diagonal with
blocks A1, . . . , Ak, each block is associated with a distinct characteristic value ci, each
Ai is again block diagonal consisting of elementary Jordan matrices with characteristic
value ci, and for each Ai the orders of its blocks are non-increasing.

Theorem 8. Let c factor completely over F , i. e., c = (x − c1)d1 . . . (x − ck)dk . Then
there exists a basis of V in which T has a block diagonal matrix A in the Jordan form.
The matrix A is determined uniquely, up to ordering of the blocks Ai.
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Introduction to quaternion algebras

Lenka Macálková

1. Basic definitions

Definition 1. Let F is field, char F 6= 2. A quaternion algebra A over F is a four-
dimensional F -space with basis 1, i, j, k. Multiplication on A is defined by following rules:

i2 = a, j2 = b, ij = −ji = k,

where a, b ∈ F ∗. We will be denoted this quaternion algebra by (a,b
F

).

Definition 2. Let A0 be subspace of quaternion algebra A spanned by i, j, k. Then
elements of A0 are the pure quaternions in A.

Each element x of quaternion algebra A has a unique decomposition as x = a + α,
where a ∈ F and α ∈ A0. We can define conjugate x of x by x = a− α.

Definition 3. For x ∈ A the reduced norm and reduced trace are defined by n(x) = xx
and tr(x) = x+ x.

Example. We introduce some kind of quaternion algebras, demonstrate additive and
multiplicative operation and show computing norm and trace in this quaternion algebras.

• Hamilton quaternions is division algebra.

• (−a,a
F

) in not division algebra.

2. Classification of Quaternion Algebras

Theorem 4. Every four-dimensional simple central algebra over F of characteristic 6= 2
is a quaternion algebra.

Theorem 5. For A = (a,b
F

), the following are equivalent:

(1) A ∼= ( 1,1
F

).

(2) A is not a division algebra.

(3) A is isotropic as a quadratic space with the norm form.

(4) A0 is isotropic as a quadratic space with the norm form.

(5) The quadratic form ax2 + by2 = 1 has solution in F .

(6) If E = F (
√
b), then a ∈ NE|F (E).

Example. A quaterion algebra over R is isomophic to Hamilton quaternions or ( 1,−1
R ).
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Lambda-modules

Jana Medková

The goal of this presentation is to formulate and proove the structure theorem for
Λ-modules, where Λ is the ring of formal power series over the ring of p-adic integers. In
effort to keep the lecture short and get to the point in given time here are listed some
properties of the ring Λ. If interested, proofs can be found in the book Introduction to
cyclotomic fields by Lawrence C. Washington.

Theorem 1. Let f, g ∈ Λ and f =
∑∞
i=0 aiT

i, where a0, . . . , an−1 ∈ (p), an ∈ Z×p .
Then theere exist unique q ∈ Λ, r ∈ Zp[T ] such that g = qf + r and deg(r) < n.

Definition 2. Polynomial P ∈ Zp[T ] is called distinguished if P = Tn + an−1Tn−1 +
· · ·+ a0, where a0, . . . , an−1 ∈ (p).

Theorem 3. Let f ∈ Λ be non-zero. Then f can be uniquely written as f = psPU ,
where s is a non-negative integer, P is a distinguished polynomial and U ∈ Λ×.

Lemma 4. Let P ∈ Zp[T ] be a distinguished polynomial and let g ∈ Zp[T ] be arbitrary.
If g

P
∈ Λ, then g

P
∈ Zp[T ].

Lemma 5. Let f ∈ Λ, f /∈ Λ×. Then the quotient ring Λ/(f) is infinite.

Lemma 6. Let I 6= 0 be an ideal of the ring Λ. Then I contains a nonzero polynomial.
Moreover, there is a distinguished polynomial H ∈ Zp[T ] such that there is a non-negative
integer s such that psH(T ) ∈ I and every element in I is divisible by polynomial H(T ).

Lemma 7. Assume that f, g ∈ Λ are relatively prime. Then the quotient ring Λ/(f, g)
is finite.

Lemma 8. The ring Λ is a noetherian ring, unique factorizaton domain, its prime
ideals are only of following form: {0}, (p), (p, T ) a ideals (P ), where P is an irreducible
distinguished polynomial and (p, T ) is the only maximal ideal.

Here follows lots of preparation lemmas. The main reason for these lemmas to be
stated are to make the proof of structure theorem as simple as possible.

Lemma 9. Let M be a finitely generated Λ-module and f, g ∈ Λ are relatively prime. If
the ideal (f, g) annihilates M , then M is finite.

Definition 10. We call two Λ-modules M,M ′ pseudoisomorphic, denote M ∼ M ′, if
there is a homomorphism ϕ : M →M ′ with a finite kernel and cokernel.

Lemma 11. Assume that f, g ∈ Λ are relatively prime. Then

(1) the natural homomorphism Λ/(fg) → Λ/(f) ⊕ Λ/(g) is an injection with finite
kernel,

(2) there exists an injective homomorphism Λ/(f) ⊕ Λ/(g) → Λ/(fg) with a finite
cokernel.

Lemma 12. Let M,M ′,M ′′ be modules such that M ∼M ′, M ′ ∼M ′′. Then M ∼M ′′.
Lemma 13. Let M , M ′, N , N ′ be Λ-modules such that M ∼ M ′, N ∼ N ′. Then
M ⊕N ∼M ′ ⊕N ′.
Lemma 14. Let R be a noetherian commutative ring, M finitely generated R-module.
Then every submodule N ⊆M is finitely generated.
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Every finitely generated Λ-module M ∼= Λn/N . The submodule N ⊆ Λn is also finitely
generated by (λ11, . . . , λ1n), . . . , (λm1, . . . , λmn) ∈ Λn. We will denote r(M) = (λij)m×n.

On the other hand we will denote m(R) = Λn/((λ11, . . . , λ1n), . . . , (λm1, . . . , λmn))
for each m× n matrix R = (λij)m×n.

Lemma 15. Let A, B be matrices over the ring Λ. Then

m

(
A 0
0 B

)
∼= m(A)⊕m(B).

Finally the structure theorem for Λ-modules.

Theorem 16. Let M be a finitely generated Λ-module. Then M ∼ Λr⊕
(⊕s

i=1 Λ/(pni )
)
⊕(⊕t

j=1 Λ/(P
mj
j )

)
, where r, s, t, ni,mj ∈ Z are non-negative integers and Pj are irre-

ducible distinguished polynomials.

Operation 1: We may interchange two rows (columns).

Operation 2: We may add a multiple of a row (column) to another row (column).

Operation 3: We may multiply a row (column) by λ ∈ Λ×.

Operation 4: If R contains a row (λ1, pλ2, . . . , pλn), p - λ1, then we may change R to R′

which contains a row (λ1, λ2, . . . , λn) and all elements of the first column except
for λ1 are multiplied by p.

Operation 5: If all elements in the first column of R are divisible by pk and if there is a
row (pkλ1, pkλ2, . . . , pkλn), p - λ1, then we may change R to R′ which contains
a row (λ1, λ2, . . . , λn) and otherwise is the same as R.

Operation 6: If R contains a row (pkλ1, pkλ2, . . . , pkλn) and (λλ1, λλ2, . . . , λλn) is also
a relation for some λ ∈ Λ, p - λ then we may change R to R′ which contains a
row (λ1, λ2, . . . , λn) and otherwise is the same as R.

Lemma 17. Using the six operations, every matrix R over Λ can be transformed to
a matrix in diagonal form, which has only zeros or distinguished polynomials on the
diagonal.
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Bounding Helly numbers from Betti numbers

Zuzana Safernová1

Introduction

Helly’s theorem asserts that if in a finite collection of convex subsets of Rd any d+ 1
have a point in common then the whole collection must have a point in common. In the
contrapositive, this theorem states that any family of convex subsets of Rd with empty
intersection must contain a sub-family of size at most d + 1 that already has empty
intersection. This invited the definition of the Helly number of a family F with empty
intersection as the size of the largest sub-family G ⊆ F with the following properties:
G has empty intersection and any proper sub-family of G has non-empty intersection. (If
a family has non-empty intersection then its Helly number is, by convention, 0.) With
this terminology, Helly’s theorem simply states that any finite family of convex sets in Rd
has Helly number at most d+1. Such uniform bounds, that is bounds independent of the
cardinality of the family, are of particular interest.

We will prove that if the Helly number of a finite family of sets in Rd has huge Helly
number then some intersections of the sets must be topologically really complicated.

The study of topological conditions ensuring bounded Helly number has been studied
for a long time.

Main result

Before we precisely state our main result, we need the following definition.

Definition 1. The k-th Betti number bk of a space X is a dimension of the k-th Z2-
homology group of X.

Informally, the kth Betti number refers to the number of unconnected k-dimensional
surfaces. The first few Betti numbers have the following intuitive definitions: b0 is the
number of connected components, b1 is the number of two-dimensional or ”circular” holes,
b2 is the number of three-dimensional holes or ”voids”, etc.

Theorem 2. For any non-negative integers b and d there exists an integer h(b, d) such
that the following holds. If F is a finite family of subsets of Rd such that βi

(⋂
X∈GX

)
≤ b

for any G ( F and every 0 ≤ i ≤ d d
2
e − 1 then F has Helly number at most h(b, d).

Idea of the proof. Suppose for contradiction that for every n we have set system with
bounded Betti numbers of intersections and which Helly number is at least n. We may
take without loss of generality minimal such system, i. e. system with n+ 1 sets only. We
proceed by induction and show if n is sufficiently large, we can construct a homological
drawing of the dd/2e-skeleton of the (d + 2)-simplex, which is a contradiction, since it is
not possible in Rd (Van Kampen type obstruction).

Let F = {U1, U2, . . . , Un} denote a family of subsets of Rd. For any (possibly empty)
proper subset I of [n] = {1, 2, . . . , n} we write VI for

⋂
i∈[n]\I Ui.

Step 1. For every i pick a point vi ∈ Vi, this gives a 0-dimensional skeleton of (n − 1)-
simplex (i. e. set of n points).

1joint work with Xavier Goaoc, Pavel Paták, Martin Tancer and Uli Wagner

25



Step 2. Suppose we have already constructed k-dimensional skeleton of a sufficiently large
simplex Q. Suppose that the vertices are linearly ordered. We will construct
a (k + 1)-dimensional skeleton S of a m-dimensional simplex. In any sufficiently
large (say with ` elements) subset T of its vertices, there exist 2k+1−1 elements,
such that all k-cycles formed by them are in the same homological class in VT
(Ramsey’s theorem). Colour each `-element subset of Q by the relative position
of these elements. Let q be the number of vertices in barycentric subdivision

of S. We apply Ramsey’s theorem again, to obtain a
(
q +

(m+1
k+1

)
(`− 2k+1 + 1)

)
-

element monochromatic set P . One can choose a q-element subset C of P , and
for every its (2k+1 − 1)-element subset D ψ(D) ⊆ C \ D such that ψ(D) and
ψ(D′) are disjoint for D 6= D′, and every cycle in D has the same homological
class in VD∪ψ(D). But since D is a barycentric subdivision of a (k+ 1)-face of S,

it contains an even number of cycles, which sum up to zero (in Z2), hence we
have a boundary and can fill its interior inside VD∪ψ(D).
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Cantor’s diagonal argument – Part I: Usage in set theory

Jakub Töpfer

The aim of this topic is to show, how Cantor’s diagonal argument can be very useful
in many fields of mathematics. This inductory part presents the method and covers some
classical theorems and paradoxes from the set theory.

1. Overview of the argument

The most famous usage of the argument is for proving the following theorem:

Theorem 1 (Cantor). N ≺ R

Proof. Let’s suppose that there is a bijection between N and (0, 1). Then all real numbers
from (0, 1) can be ordered in a sequence a1, a2, . . . Let’s denote d a number from (0, 1)
which has on i-th position of his decinal expansion 1 if in decimal expansion of ai isn’t
on i-th position 1 and 2 otherwise. Then d is a real number, which isn’t at list of all real
numbers, which is a contradiction, so N ≺ (0, 1). �

Another theorem claims:

Theorem 2 (Cantor). x ≺ P(x)

Proof. A map which every t ∈ x matches with {t} is clearly an ijection, so x � P(x). We
will show that x 6≈ P(x). Let f be a bijection from x to P(x) and let y ⊆ x be a set such
as

y = {t : t ∈ x & t 6∈ f(t)}.

Then y hasn’t any preimage under a map f . If f(v) = y for some v ∈ x, then v ∈ y or
v 6∈ y. Both leads to a contradiction. �

2. Paradoxes

Cantor’s diaginal argument is used also in many paradoxes, which at the beginning of
the twentieth century led to formulation of axiomatic set theories.

Paradox 3 (Russell). Let
x = {y : y 6∈ y}.

Then x ∈ x if and only if x 6∈ x.

Paradox 4 (Richard). Let’s consider all real numbers x ∈ (0, 1) such as they can be
described by a finite sequence of words, e.g. “one half”, “3rd square root of seven”. This
set is finite, so it can be ordered in a sequence a1, a2, . . . , where every ai has infinite
decimal expansion. Now we can define a number d by a finite sequence of words: “d is
a real number between 0 and 1 which has i-th digit in its decimal expansion equal to 1
if i-th digit of decimal expansion of ai is differnt from 1 and 2 otherwise”. Is d in the
original set?
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Cantor’s diagonal argument – Part II

Jiř́ı Sýkora

In this part we show applications of the diagonal method in mathematical logic. We
present the diagonal lemma and its consequences, e.g. Gödel’s first incompleteness theo-
rem.

We also show the undecidability of Peano arithmetic. Furthermore, we focus on ultra-
filters and ultrapowers.

Lemma 1 (Diagonal lemma). Let T be an extension of the theory Q and let ϕ(v0) be a
formula of T . Then there exists a sentence ϕ∗ such that T ` ϕ∗ ↔ ϕ(ϕ∗).

Theorem 2 (Gödel’s first theorem). Let T be a consistent and effectively generated
extension of the theory Q. Then there exists a Π1-sentence in the language of arithmetic
which is true in N and unprovable in T .

Definition 3. Formula τ(x) of a numerical theory T is a definition of truth in T if for
each sentence ϕ of T the following statement holds: T ` ϕ↔ τ(ϕ).

Theorem 4.

(1) There is no definition of truth in a consistent extension of the theory Q.

(2) Th(N ) is not an arithmetical set.

Theorem 5. Let T be a consistent extension of the theory Q. Then T is undecidable.
Moreover, if T is effectively generated, then T is not complete.

Definition 6. An ultrafilter over a set X is a set U ⊆ P(X) such that

(1) if A ∈ U and A ⊆ B then B ∈ U ,

(2) if A,B ∈ U then A ∩B ∈ U ,

(3) ∅ 6∈ U , and

(4) for each subset A ⊆ X, exactly one of A,X \A is in U .

Theorem 7 ( Loś’s theorem). Let L be a first-order language, (Ai : i ∈ I) a non-empty
family of non-empty L-structures and U an ultrafilter over I. Then for any formula φ(x̄)
of L and tuple ā of elements of

∏
I Ai,∏

I

Ai/U |= φ(ā/U ) if and only if ‖φ(ā)‖ ∈ U .

Corollary. If AI/U is an ultrapower of A, then the diagonal map e : A→ AI/U is an
elementary embedding.

Corollary (Existence of nonstandard models of arithmetic). There is a model A of the
theory of natural numbers and a ∈ A such that A |= a > n for every natural number n.
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Cantor’s diagonal argument – Part III

Tomáš Kobrle

In the third lecture we introduce the Cantor’s diagonal argument in computation the-
ory, the Halting problem, and in recursion theory, the Kleene’s theorem.

We also mention quines, programs generating its own source code, and fast growing
functions.

Definition 1. The set of partial recursive functions (PRF ) is the smallest set of partial
functions Nd → N for d = 0, 1, 2, . . . such that

• the function 0: N0 → N with value 0 is PRF , and the successor function S : N→
N is PRF ;

• the projective function P id : Nd → N for 1 ≤ i ≤ d is PRF ;

• whenever g : Nm → N, h1, . . . , hm : Nd → N are PRF , so is g(h1, . . . , hm);

• whenever g : Nd−1 → N, h : Nd+1 → N are PRF , then a function f : Nm → N
such that for all x1, . . . , xd

f(x1, . . . , xd−1, 0) = g(x1, . . . , xd−1)

f(x1, . . . , xd−1, xd + 1) = h(x1, . . . , xd−1, xd, f(x1, . . . , xd−1, xd))

is PRF too. The function f is said to be obtained by primitive recursion from g
and h and it is unique determined;

• whenever g : Nd+1 → N is PRF , then so is f : Nd → N, where f(x1, . . . , xd) gives
a minimal y such that g(x1, . . . , xn, y) = 0.

Definition 2. We call a set A ⊂ Nd recursive if characteristic function χA : Nd → N is
recursive. Instead of saying that the set A is recursive we also say that A is decidable.

Theorem 3. For each d we have PRF φ(d) : N × Nd → N, such that each φ(d)(e, •) =

φ
(d)
e : Nd → N, for e ∈ N, is partial recursive and for each PRF f : Nd → N there is an e

such that f = φ
(d)
e .

Theorem 4 (Halting Problem). The halting problem

{(e, n) |φ(e, n)↓}

is undecidable. (The symbol φ(e, n)↓ means that (e, n) is in domain of φ.)

Theorem 5 (Kleene’s Theorem). Let g : N → N be recursive. Then there exists an e0
such that Φe0 = Φg(e0).

29





Programme

Friday, April 12

10:55 Opening

11:00 Vojta Luhan – Transcendence of e and π – Part I

11:45 Michaela Kučerová – Transcendence of e and π – Part II

12:30 Lunch

13:30 Milan Boháček – Transcendence of e and π – Part III

14:15 Petr Nižňanský – p-adic numbers – Part I

15:00 Coffee break

15:15 Hana Holmes – p-adic numbers – Part II

16:00 Adam Ráž – p-adic numbers – Part III

18:30 Supper

19:30 Marian Kechlibar – TBA

Saturday, April 13

08:00 Breakfast

09:00 Ondřej Väter – Numeration systems – Complex Basis

09:45 Adéla Skoková – Numeration systems – Irrational basis

10:30 Coffee break

10:45 Josef Dvořák – Numeration systems – Quasicrystals

11:30 Tomáš Jakl – The set of arithmetical sets is not arithmetical

12:30 Lunch

18:30 Supper

19:30 Graduate talks

Sunday, April 14

08:00 Breakfast

09:00 Vojta Tůma – Primary and cyclic decomposition theorems – Part I

09:45 Alexander Slávik – Primary and cyclic decomposition theorems – Part II

10:30 Coffee break

10:45 Marcel Šebek – Primary and cyclic decomposition theorems – Part III

11:30 Lenka Macálková – Introduction to quaternion algebras

12:30 Lunch

13:30 Jana Medková – Lambda-modules

14:15 Jaroslav Šeděnka – TBA

19:30 Final dinner
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Monday, April 15

08:00 Breakfast

09:00 Zuzana Safernová – Bounding Helly numbers from Betti numbers

09:45 Jakub Töpfer – Cantor’s diagonal argument – Part I: Usage in set theory

10:30 Coffee break

10:45 Jǐŕı Sýkora – Cantor’s diagonal argument – Part II

11:30 Tomáš Kobrle – Cantor’s diagonal argument – Part III

12:30 Lunch
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