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Alphabets and Words

Definition
Let X be a finite, nonempty set called an alphabet. The elements of ¥
are referred to as letters.
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Alphabets and Words
Definition
> a finite word over an alphabet X is any finite sequence of letters
from ¥

» if w is a finite word, then its length (the number of symbols it
contains) is denoted by |w/|

> the empty word will be denoted by ¢
» by ¥* we understand the set of all finite words over %.

> an infinite word is a map from Ng to
if w is an infinite word we often write w = wowyws . .. where each
w; € 2.

> vy is a subword or factor of a word w if there exist words x, z
W = Xyz

> x is a prefix of word w if there exists y such that w = xy

Example
* — f¢.0.1.01.10.001,010....}



Morphisms

Definition
Let > be an alphabet. A map ¢ : X* — X* is called a morphism if ¢
satisfies p(xy) = p(x)p(y) Vx,y € *.

If there exists a constant k such that |p(a)| = k Va € L, we say ¢ is
k-uniform. A 1-uniform morphism is called a coding.



Morphisms

Definition
Let > be an alphabet. A map ¢ : X* — X* is called a morphism if ¢
satisfies p(xy) = p(x)p(y) Vx,y € *.

If there exists a constant k such that |p(a)| = k Va € L, we say ¢ is
k-uniform. A 1-uniform morphism is called a coding.

Example - It is time to introduce the celebrity

The Thue-Morse morphism is a morphism
X5 — X5 where pu(0) = 01 and p(1) = 10.

Let ¢ : ¥ — ¥* be a morphism. A finite or infinite word satisfying
p(w) = w is said to be a fixed point of .



Morphisms

Definition

If there exists a € ¥ such that ¢(a) = ax for some x € X* such that ¢'(x) # €
Vi € Ny we say ¢ is prolongable on a. In this case, the sequence of words

a, p(a), ¥*(a), . .. converges, in the limit, to the infinite word

g;i(a) = axp(x)p* (x)p3(x) . ..

which is a fixed point of ¢.



Morphisms
Definition '
If there exists a € ¥ such that ¢(a) = ax for some x € X* such that ¢'(x) # €

Vi € Ny we say ¢ is prolongable on a. In this case, the sequence of words
a, p(a), ¥*(a), . .. converges, in the limit, to the infinite word

=
¢(a) = axp(x)¢’ ()¢’ (x) . .
which is a fixed point of ¢.

Example
Since 14(0) = 01 and p(1) = 10 we have that u is prolongable on both 0 and 1, hence:

= uW(O) = 011010011001011010010110...



Morphisms

Observation

Let kK > 2, X an alphabet, ¢ : ¥* — ¥* a k-uniform morphism and
W = wowiws ... an infinite word over the alphabet X.

Then w = p(w) < ¢ is prolongable on wy and w = ¢“(wp).

Proof.
<= w = woxp(x)e?(x) ...
= we have:

W = Wowiwop...

= (wo)p(wr)p(nz) - ..

Vi € No: ¢'(wp) is a prefix of w
Hence w = ¢*(wyp).



Numeration System Notation

Definition
Let n € {0,1,2,...}, kK > 2 an integer.
» By (n)x we understand the unique base-k expansion of n.

» More formally: (n)x = ara¢—1...a1ap such that n = Z;:o ajk’ with

at?éo.
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Numeration System Notation

Definition
Let n € {0,1,2,...}, kK > 2 an integer.
» By (n)x we understand the unique base-k expansion of n.
» More formally: (n)x = ara¢—1...a1ap such that n = Z;:o ajk’ with
ar # 0.
Let kK > 2 be an integer, w € Xy = {0,1,..., k — 1};
W = atd¢—1...4d140-
> Then we define [w]x = > i_, aik’.

Example

(42), = 101010
[1110], = 13 = [00001110],



Deterministic Finite Automata with Output




More formally

Definition
A deterministic finite automaton with output, or DFAQ is a 6-tuple
M =(Q,%,6,q, A, 7) where

Q is a finite set of states

2 is the finite input alphabet

0 : QX X — Q is the transition function
qo € Q is the initial state and

A is the finite output alphabet

T :Q — A is the output function.



More formally

Definition
A deterministic finite automaton with output, or DFAQ is a 6-tuple
M =(Q,%,6,q, A, 7) where

Q is a finite set of states

2 is the finite input alphabet

0 : QX X — Q is the transition function
qo € Q is the initial state and

A is the finite output alphabet

T :Q — A is the output function.

Moreover, when the input alphabet ¥ = ¥4 for an integer k > 2, we call a DFAO a
k-DFAO.



More formally

Definition
A deterministic finite automaton with output, or DFAQ is a 6-tuple
M =(Q,%,6,q, A, 7) where

Q is a finite set of states

2 is the finite input alphabet

0 : QX X — Q is the transition function
qo € Q is the initial state and

A is the finite output alphabet

T :Q — A is the output function.

Moreover, when the input alphabet ¥ = ¥4 for an integer k > 2, we call a DFAO a
k-DFAO.

Notation
gia:=96(gi,a), aex



k-automatic sequeces

Definition
We say the sequence (a,)n>0 over a finite alphabet A is k-automatic if

there exists a k-DFAO M = (Q, X, d, qo, A, 7) such that a, = 7(gow))
for all n > 0 and all w with [w]x = n.

Example - yet another definition of the Thue-Morse word
t = (tn)n>0 is defined as:

t, = 0 if the number of 1's in (n), is even

t, = 1 if the number of 1's in (n)y is odd
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k-automatic sequeces

Definition
We say the sequence (a,)n>0 over a finite alphabet A is k-automatic if

there exists a k-DFAO M = (Q, Xy, d, qo, A, 7) such that a, = 7(gow))
for all n > 0 and all w with [w]x = n.

Example - yet another definition of the Thue-Morse word
t = (tn)n>0 is defined as:

t, = 0 if the number of 1's in (n)2 is even ... evil numbers

n = 1 if the number of 1's in (n)2 is odd ... odious numbers

We can easily show t is 2-automatic.



k-automatic sequeces

Example

t = (tn)n>0 is defined as:

t, = 0 if the number of 1's in (n)2 is even
t, = 1 if the number of 1's in (n); is odd

0 1



Parents and Children

Suppose we have a fixed point a of a k-uniform morphism ¢ : ¥* — ¥*.

a = apadiazas ...

= ¢(a0)p(a1)p(a2)p(as) . ..

Observation

v(ai) = akiaki+1ki+1 - - - akivk—1 Vi € No

Definition

p € Ny is a parent of q if the element of a at position q arises as an image of the
element at position p under the morphism . We say q is a child of p and we put
p = par(q).
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Parents and Children

Suppose we have a fixed point a of a k-uniform morphism ¢ : ¥* — ¥*.

a = apadiazas ...

= ¢(a0)p(a1)p(a2)p(as) . ..

Observation

v(ai) = akiaki+1ki+1 - - - akivk—1 Vi € No

Definition

p € Ng is a parent of q if the element of a at position q arises as an image of the
element at position p under the morphism . We say q is a child of p and we put
p = par(q).

Or Differently

le(ao- - - ap] < g < (a0 . - ap|

Properties

- children of p: kp,kp+1,...kp+ k+1

-p=gqdivk

- q = par(q) + (q mod k)



Cobham’s Theorem

Theorem (Cobham'’s Theorem)

Let k > 2. Then a sequence u = (un)n>0 is k-automatic if and only if it
is the image, under a coding, of a fixed point of a k-uniform morphism.
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is the image, under a coding, of a fixed point of a k-uniform morphism.
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k-uniform morphism ¢ : ¥* — X*, a = qpa1az . . ..



Cobham’s Theorem

Theorem (Cobham'’s Theorem)
Let k > 2. Then a sequence u = (un)n>0 is k-automatic if and only if it

is the image, under a coding, of a fixed point of a k-uniform morphism.

Proof
< We have u = 7(a) for some coding T : ¥ — A and a = ¢(a) for a
k-uniform morphism ¢ : ¥* — X*, a = qpa1az . . ..

We will construct a k-DFAO M = (Q, X, 0, qo, A, T) such that:
qo(n)k = an Vn € No.
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P

©(ai) = akakit1aki+1 - - - Aki+k—1

children of p: kp,kp+1,...kp+ k+1
p=qdiv k

g = par(q) + (q mod k)

G= (N07 E)

QD

1 2

1 2
/\1 /\1 0 k—1
k 2k —1 2k 3k -1

k(k —1) k(k—1)+k—1



Proof

P

©(ai) = akakit1aki+1 - - - Aki+k—1

children of p: kp,kp+1,...kp+ k+1
p = qdiv k

g = par(q) + (q mod k)

G= (N07 E)

T
AWATNAS

k-1 2 3k —1 k(k —1) k(k—1)+k—1

(n)k = nene—1 ... mng



Proof

Formal construction of k-DFAO M = (Q, X«, 8, qo, A, T)

Q=Y qgo:=apand §: Qx X, — Q is defined as: 6(,b):thebth
letter of p(q). By induction we will show that d(qo, (n)x) =



Proof

Formal construction of k-DFAO M = (Q, X«, 8, qo, A, T)

Q=Y qgo:=apand §: Qx X, — Q is defined as: 6(,b):thebth
letter of p(q). By induction we will show that d(qo, (n)x) =

-n=0:v



Proof

Formal construction of k-DFAO M = (Q, X«, 8, qo, A, T)

Q=Y qgo:=apand §: Qx X, — Q is defined as: 6(,b)—thebth
letter of p(q). By induction we will show that d(qo, (n)x) =

-n=0:v
-n>0:Suppose n= ngn¢_1...nng where n = kn’ + ng. Then:



Proof

Formal construction of k-DFAO M = (Q, X«, 8, qo, A, T)

Q= =%, qo:=ap and § : Q x Xy — Q is defined as: d(q, b) := the b-th
letter of p(q). By induction we will show that (qo, (n)x) = wp.

-n=0:v
-n>0:Suppose n= ngn¢_1...nng where n = kn’ + ng. Then:

qo(n)k = QO(ntnt_l - no)

= (qu NgNg_1 ... nl)no

= (QO(n/)k)no

= Wp o

= the ny’th symbol of p(w,y)
Win' 4-ng
=w,



Proof

M = (Q, %k, 9, qo, Q, id) produces an automatic sequence a = (a5)n>0



Proof

M = (Q, %k, 9, qo, Q, id) produces an automatic sequence a = (a5)n>0

ao = qo0
ap — qol

ai = qo(i)«



Proof

qok — 1

qol0 qolk —1 20 qo2k — 1 qok — 10 qok — 1k —1



Proof

=
M = (9, Xk, 0, qo, Q, id) produces an automatic sequence a = (an)n>0

ap = qOO
ao = qol
ai = qo(i)k

©(q)=q0ql...gk—1Vqe Q
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Proof

=
M = (9, Xk, 0, qo, Q, id) produces an automatic sequence a = (an)n>0

ap = qOO
a0 = qol
ai = qo(i)«

©(q)=q0ql...gk—1Vqe Q
It suffices to show that: p(a;) = akiaki+1 - . - Akivk—1 Vi
Since then: cp(aoal - a,-) = apa1 ... akidki+1 - - - dki+k—1 Vi

e(ai) = ¢(qo(i)k)
= qo(i)ko qo(l')k]. P qo(i)kk -1
= qo(ki)k qo(ki + 1)k ... qo(ki + k — 1)«

= akidki+1 - - - dki+k—1
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=
M = (9, Xk, 0, qo, Q, id) produces an automatic sequence a = (an)n>0

ap = qOO
a0 = qol
ai = qo(i)«

©(q)=q0ql...gk—1Vqe Q
It suffices to show that: p(a;) = akiaki+1 - . - Akivk—1 Vi
Since then: cp(aoal - a,-) = apa1 ... akidki+1 - - - dki+k—1 Vi

e(ai) = ¢(qo(i)«)
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=
M = (9, Xk, 0, qo, Q, id) produces an automatic sequence a = (an)n>0
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e(ai) = ¢(qo(i)«)
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= akidki+1 - - - dki+k—1

7(p(a)) = 7(a) = 7(g00)7(qo1)7(q02) . . .



Corollary

The two definitions of the Thue-Morse word are equivalent.
t = (tn)n>o0 is defined as:

t, = 0 if the number of 1's in (n)2 is even

t, = 1 if the number of 1's in (n)2 is odd

0 1 0

—>
t = p*(0) where p(0) =01, p(1) =10



Example

Rudin-Shapiro sequence v = (rp)n>0 is defined by the following:
- rp = 1 if the number of (possibly overlapping) occurences of the block

11 in (n)3 is even
- rp = —1 otherwise



Example

Rudin-Shapiro sequence v = (ry)n>0 is defined by the following:

- r» = 1 if the number of (possibly overlapping) occurences of the block 11 in (n), is
even

- rp = —1 otherwise

0 1 1 0 0
roolcls
\/
0 1 1
p(a) = a0al = ab
p(b) = b0 bl = ac

o(c)=c0cl=db
o(d) =d0dl = dc



Example

Rudin-Shapiro sequence v = (ry)n>0 is defined by the following:

- r» = 1 if the number of (possibly overlapping) occurences of the block 11 in (n), is
even

- rp = —1 otherwise

0 1 1 0 0
o W W
~_
0 1 1
p(a) = a0al = ab
p(b) = b0 bl = ac
o(c)=c0cl=db

¢(d) = d0d1 = dc
©“(a)) = abacabdbabacdcac - - -



Example

Rudin-Shapiro sequence v = (ry)n>0 is defined by the following:

- r» = 1 if the number of (possibly overlapping) occurences of the block 11 in (n), is
even

- rp = —1 otherwise

0 1 1 0 0
(Y (Y
Aol W W T
0 1 1

p(a) = a0al = ab

p(b) = b0 bl = ac

o(c)=c0cl=db

¢(d) = d0d1 = dc

©“(a)) = abacabdbabacdcac - - -

7(¢¥(a)) =111-111-11111-1-1-11-1.--



Any Questions?



	Basic Notions
	Alphabets and Words
	Deterministic finite automata
	Automatic Sequences

	Cobham's Theorem
	Proof
	Example


