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Cayley’s formula

Cayley’s formula

For every n ∈ N , the number of labelled trees on n vertices is nn−2.
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Cayley’s formula

Cayley’s formula

For every n ∈ N , the number of labelled trees on n vertices is nn−2.

Equivalent problem

For every n ∈ N , the number of labelled, rooted trees on n vertices is
nn−1.
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Overview

1. Find the generating function (implicit expression)
Symbolic method

2. Analysis of the generating function
Lagrange inversion theorem
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Definitions

Definition

A combinatorial class, or simply a class, is a finite or denumerable set
on which a size function is defined, satisfying the following conditions:

1. the size of an element is a non-negative integer

2. the number of elements of any given size is finite
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Definitions

Definition

The counting sequence of a class A is the sequence of integers (An)n≥0

where An is the number of objects in class A that have size n.

Definition

The ordinary generating function (OGF) of a combinatorial class A is
the formal power series

A(z) =
∞∑

n=0

Anzn
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Definitions

Definition

The counting sequence of a class A is the sequence of integers (An)n≥0

where An is the number of objects in class A that have size n.

Definition

The exponential generating function (EGF) of a combinatorial class
A is the formal power series

A(z) =
∞∑

n=0

An

n!
zn An = n! · [zn]A(z)
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The Symbolic Method
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The Symbolic Method

Example (Binary Trees (rooted, plane))
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The Symbolic Method

Example (Binary Trees (rooted, plane))

◦ Class of binary trees, T ={binary trees}, size = # of vertices
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The Symbolic Method

Example (Binary Trees (rooted, plane))

◦ Class of binary trees: T ={binary trees}, size = # of vertices
◦ Atomic class: Z ={•}, size = 1
◦ Neutral class: E ={empty graph}, size = 0
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The Symbolic Method

Example (Binary Trees (rooted, plane))

T = Z × E × E + Z × T × T

T(z) = z · 1 · 1 + z · T(z) · T(z) = z(1 + T(z)2)
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The Symbolic Method

Observation

1. The EGF of E is 1.
E contains by definition only a single object of size 0.

2. The EGF of Z is z.
Z contains by definition only a single object of size 1.

3. The EGF of A + B is A(z) + B(z), given A ∩ B = ∅.
If A ∩B = ∅ then we have either an element from A or from B .
Count elements of size n in A then in B and add them up.
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The Symbolic Method

Observation

The EGF of C = A × B is A(z) · B(z).

Let c ∈ A × B , size(c)= n.
Then c is a combination of a and b,
where a ∈ A , size(a)= k and b ∈ B , size(b)= n − k.

⇒ True for OGF’s.
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The Symbolic Method

Observation

The EGF of C = A × B is A(z) · B(z).

When we combine objects, we have to relabel them...
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The Symbolic Method

Observation

The EGF of C = A × B is A(z) · B(z).

But we can’t just relabel randomly, otherwise we doublecount!
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The Symbolic Method

Observation

The EGF of C = A × B is A(z) · B(z).

Relabeling has to be order-preserving
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The Symbolic Method

Observation

The EGF of C = A × B is A(z) · B(z).

Choose k labels for left object, use the other (n-k) labels for right
object

Cn =
n∑

k=0

(
n
k

)
AkBn−k = n!

n∑
k=0

Ak

k!
· Bn−k

(n − k)!
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The Symbolic Method

Sequence Construction

A = Z
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Sequence Construction

A = Z × (E +A )
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Sequence Construction
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The Symbolic Method

Sequence Construction

A = Z × (E +A +A ×A +A ×A ×A + . . . )

= Z × SEQ(A )

A(z) = z ·
∑
n≥0

A(z)n = z · 1
1 − A(z)
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The Symbolic Method

Set Construction

A = Z × SET(A )

A(z) = z · (1 + A(z) +
A(z)2

2
+

A(z)3

3!
+

A(z)4

4!
. . . ) = z · exp(A(z))
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The Symbolic Method

Set Construction

A = Z × SET(A )
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Summary

If we can (literally) describe a combinatorial class in terms of "and,
or, set, sequence", we can immediatly derive the generating function!

Construction Symbolic EGF

Sum A + B A(z) + B(z)

Product A × B A(z) · B(z)

Sequence SEQ(A ) (1 − A(z))−1

Set SET(A ) exp(A(z))
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Analysis of the EGF
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Singularity Analysis

Theorem (Cauchy-Hadamard)

Let A(z) =
∑

n≥1 An(z − c)n be a power series with An, c ∈ C . Then
the radius of convergence of A at the point c is given by

1
R

= lim sup
n→∞

|An|
1
n

|An| ∼ R−nϕ(n)

=⇒ "Singularity analysis"
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Cauchy Integral Formula

Theorem (Cauchy Integral Formula)

Let f be a holomorph function in an open subset D ⊆ C and let
Br(c) ⊆ D. Then it holds for all z ∈ Br(c):

f(z) =
1

2πi

∫
∂B

f(y)
y − z

dy

As a consequence, f is analytic in Br(c) and for its Taylor series
f(z) =

∑
fn(z − c)n it holds that

fn =
1

2πi

∫
∂B

f(y)
(y − c)n+1 dy
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Cauchy Integral Formula

If f is "nice" in D then it has Taylor series f(z) =
∑

fn(z− c)n in B and

fn =
1

2πi

∫
∂B

f(y)
(y − c)n+1 dy

=⇒ Basis for most basic theorems in analytic combinatorics
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Lagrange Inversion Theorem

Theorem (Lagrange Inversion Theorem)

Let ϕ(u) =
∑

k≥0 ϕkuk be a power series of C[[u]] with ϕ0 ̸= 0. Then,
the equation A = zϕ(A) admits a unique solution in C[[u]] whose
coefficients are given by

A(z) =
∑
n≥1

Anzn, where An =
1
n
[un−1]ϕ(u)n
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Cayley’s formula

A = Z × SET(A ) =⇒ A(z) =
∑
n≥0

An

n!
zn = z · exp(A(z))

By Lagrange Inversion Theorem:
An

n!
= [zn]A(z) =

1
n
[un−1] exp(u)n

=
1
n
[un−1]

∑
n≥0

(nu)n

n!
=

nn−1

n(n − 1)!
=

nn−1

n!
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