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Differential geometry - basic notions

@ compact surface S

@ Gaussian curvature K

Theorem (Gauss-Bonnet theorem)

Let S be compact oriented surface, then

/ K dH? = 2n(2 — 2g),
S

where g is genus of the surface S.
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Discrete differential geometry

Definition (Triangle mesh)

Triangle mesh in R3 is a triple S = (V, E, F), where
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Discrete differential geometry

Definition (Discrete Gaussian curvature)

Let S = (V, E, F) be triangle mesh. For vertex v € V we define its
discrete Gaussian curvature as 2 - ) 6;, where ; are angles in
adjacent faces to the vertex v

Theorem (Discrete Gauss-Bonnet theorem)

Let S = (V,E,F) be compact triangle mesh. Then
Z K, = 2wy,
veVv

where x = |V/| — |E| + |F| = 2 — 2g, is Euler characteristic of the
surface and g is genus of S.
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Definition (Discrete connection)

Let S’ = (V, E, F) be a dual mesh of a triangle mesh S.
Discrete connection w : E' — R, that each dual edge €’ assign
an angle.
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Discrete connections

Definition (Discrete connection)

Let S’ = (V, E, F) be a dual mesh of a triangle mesh S.
Discrete connection w : E' — R, that each dual edge €’ assign
an angle.

Definition (Levi-Civita connection)

Let ® : E/ — R be discrete connection. If Ve’ € E' : w(e') =0 we
call w a discrete Levi — Civita connection.

N
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@ discrete surface
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Definition (Discrete holonomy)

The difference in angle after a vector is transported around
a closed loop is called discrete holonomy, we will denote it h.
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Trivial connections
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Singularities

@ holonomy of a cycle around a vertex equals its Gaussian
curvature

@ curvature has to be somewhere

@ instead of making holonomy around some loops zero, we set it
to be 2kw for some k € N

@ this is how we get singularity with index k

Theorem (Poincaré index theorem)
For any surface S = (V, E, F)

Z index, = ¥,

veV

where x is Euler characteristic of S.
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@ zero holonomy around every cycle
@ find a basis of cycles on the surface

@ contractible and non-contractible loops
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Linear system

o for each base loop formed by dual edges ef, €, ..., e we have
one linear equation

w(er) +w(ep) + -+ +w(ef) = h,

where h is holonomy of the loop

@ for contractible cycles we can form vertex-edge incidence
matrix D € {0, 1}/VI*IEl

e for 2g non-contractible generators we can form matrix
H c {0,1}2%*IEl

-
@ linear system AX = b, where A = <3T) where

A c {0,1}EIx(IVI+28) and b is a vector of holonomies
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Linear system

@ vector field as smooth as possible
@ as little rotations as possible
@ the closest solution to the Levi — Civita connection

min ||AX — b||

x€RIE
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Linear system

Thank you for your attention!
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