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Introduction

Sums of two squares

In any field F is valid

(¢ +3) (7 + ¥3) = (ayr — xey2)® + (xayz + xoy)?.

This expresses product of two sums of two squares as another
sum of two squares.
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Introduction

In any field F is valid

OF+5+5+x3) 08 +¥5 +55+yi) =
(xy1 — xay2 — X3y3 — xaya)® +
(x1y2 + xoy1 + x3ya — xay3)® +
(x1y3 + x3y1 — X2y + X4y2)2 +
(x1ya + xay1 + x2y3 — X3}/2)2-
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Sums of four squares

Introduction

In any field F is valid

OF+5+5+x3) 08 +¥5 +55+yi) =
(xy1 — xay2 — X3y3 — xaya)® +
(x1y2 + xoy1 + X3y4 — X4y3)2 i
(x1y3 + x3y1 — xoya + xay2)® +
(x1ya + xay1 + x2y3 — X3)/2)2-

Product of two sums of four squares is again a sum of four
squares.
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m Graves in 1843 and Cayley in 1845 discovered an "eight
squares identity, which proves that the product of two
sums of eight squares is again a sum of eight squares.

m For a long time it was unknown if there is a similar
"sixteen squares identity” ?

m The answer is no and vyes...
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Introduction

e (F+%5+5+x5+3E+X+X+%)
R+ +B+YN+VR+R+yi+y)=

(X1y1 — Xo¥2 — Xa3y3 — Xaya — XsY5 — XeY6 — Xr¥7 — Xa¥s)" +
(x1y2 + Xey1 + X3ya — Xay3 + XsY6 — Xe¥s — X7¥s + xay7)° +
(x1y3 — X2ya + X3y1 + Xay2 + Xsy7 + Xe¥s — X7¥5 — XaY6)” +

(X1ya + Xoy3 — Xay2 + Xay1 + XsYs — Xe¥7 + X7Y6 — Xa¥5)° +

(XLYs — Xo¥6 — X3y7 — Xays + Xsy1 + XeY2 + X7y3 + xaya)® +
(X1Y6 + Xo¥5 — Xays + Xay7 — XsY2 + Xey1 — Xzya + Xay3)> +
MW+&%+&%—M%—&%+&ﬂ+hh—&hy

Mﬁ-&ﬁ+&%+m%—&ﬂ—%m+hm+&hf
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Sums of n squares

For which n there is an identity:
E+8+. . )i+ +..y)=7+7+...2,

where all zx = zy(x1, X2, - -y Xny Y1, Y25+« -+ ¥Yn)?
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The general question we ask is:
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Sums of n squares

For which n there is an identity:
CE+8+ . x)A+Y+. ) =4 +2+...2,
where all zx = zy(x1, X2, - -y Xny Y1, Y25+« -+ ¥Yn)?

ie, for which n the product of two sums of n squares is a sum
of n squares?
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The first answer is:

Theorem (Hurwitz, 1898)

If there is such identity valid in field of characteristic 0, where
each function zy is bilinear in vectors x = (x1, X2, ..., Xxn) and
y=(,y2,---,¥n), then n=1,2,4 or 8.
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The first answer is:

Theorem (Hurwitz, 1898)

If there is such identity valid in field of characteristic 0, where
each function zy is bilinear in vectors x = (x1, X2, ..., Xxn) and
y=(,y2,---,¥n), then n=1,2,4 or 8.

Note that identities we saw are bilinear in vectors x and y.
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m In 1966 Zassenhaus and Eichhorn discovered a sixteen
squares identity.

m The identity doesn't violate Hurwitz's theorem, since zx's
are not bilinear in vectors x and y.

® Actually, z,'s are rational expressions in x;'s and y;'s.
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In late 1960's, Albrecht Pfister proved several beautiful
theorems considering this question...
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If F is a field, and n = 2™ is a power of 2, then there is an
identity of form

e R+ +.. DR+ +.. ) =B+ B+...2
with zx € F(X1,X2, .y Xn, Y1, Y25 -+, ¥n), valid in F.

And more:
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Pfister's theorems

Theorem 1

If F is a field, and n = 2™ is a power of 2, then there is an
identity of form

R+ +.. )i +ys+..y) =z +Z+...22,

with zx € F(X1,X2, .y Xn, Y1, Y25 -+, ¥n), valid in F.

And more:
Theorem 2

If n is not a power of two, then there exists some field F such
that there is no identity

CE+X%+.. ) i+ys+..y)=z+Z+...23,

with zx € F(X1,X2, .y Xn, Y1, Y25 -+, ¥n), valid in F.
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The proof of Theorem 1

To prove the first theorem, fix a field F, and write n = 2.
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Titerloedian Lemma 1

Pfister's Let aj,az,...,a, € F and put a = a2 + a2 + ...+ a>. There is

theorem

an n x n matrix A with first row (a1, az, ..., an) such that
AAT = ATA = aE.
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We prove lemma by induction on m.
m The case m = 0 is trivial.

m For the case m = 1 note matrix:

A= ( a
o

a

).
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m For the case m = 1 note matrix:

A:( o az).
—dy ai

m It is easy to check that AAT = ATA = (a? + a3)E.
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We prove it for 2™ x 2™ matrices.

Pfister's m First,leta=2a?+a5+...+a2=0.

theorem

m If all ap = 0, then we can take A= 0.
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m If all ap = 0, then we can take A= 0.

® So assume that a; # 0.
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m Suppose that the result is true for 27~ x 2™~1 matrices.
We prove it for 2™ x 2™ matrices.

Pfister's m First,leta=2a?+a5+...+a2=0.

theorem

m If all ap = 0, then we can take A= 0.
® So assume that a; # 0.
m Take row R = (a1,a2,...,am) and A = allRTR.
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We prove it for 2™ x 2™ matrices.

First, let a=af +a3+...+ a2 =0.

If all ax =0, then we can take A = 0.

So assume that a; # 0.

Take row R = (a1, a2,...,am) and A= allRTR.

Its first raw is R, as required, and
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We prove it for 2™ x 2™ matrices.

First, let a=af +a3+...+ a2 =0.

If all ax =0, then we can take A = 0.

So assume that a; # 0.

Take row R = (a1, a2,...,am) and A= allRTR.
Its first raw is R, as required, and

AAT = ;%RTRRTR =0 (since

RRT = a? + ...+ a3» = a=0), and
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m Suppose that the result is true for 27~ x 2™~1 matrices.
We prove it for 2™ x 2™ matrices.

First, let a=af +a3+...+ a2 =0.

If all ax =0, then we can take A = 0.

So assume that a; # 0.

Take row R = (a1, a2,...,am) and A= allRTR.
Its first raw is R, as required, and

AAT = ;%RTRRTR =0 (since

RRT = a? + ...+ a3» = a=0), and

ATA = al%RTRRTR =0.
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a=b+c.

m We can assume that b # 0.
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Pfister’s

theorem m Putb=af+...+a3,, and c = agm_lﬂ + ..+ 33,
a=b+c.

m We can assume that b # 0.

m Let B and C be 2™ 1 x 2™~ matrices with first rows

(a1, ... ,am-1) and (apgm-1,1,...,am) such that
BBT — BTB = bE and CCT = C7C = cE.
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m Let's try to find matrix A in form A = ( B ¢ )

XY
ffister's T _ B C B T X T
: .AA_(X Y)(CT YT

_( BBT +cCT BXT +cYT
T\ XBT+YCT XXT 4+ vYT
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XY
ffister's T _ B C BT XT

: .AA_(X Y)(CT YT

_( BBT +cCT BXT +cYT

T\ XBT+YCT XXT +vYT

_ aE BXT +cCcyT

T\ XBT+YCT XXT +vYT
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m Let's try to find matrix A in form A = ( B ¢ )

X Y
B C BT XT
T _
= AA _(X Y)(CT YT>

_( BBT +cCT BXT +cYT
T\ XBT+YCT XXT +vYT
_ aE BXT +cCcyT
T\ XBT+YCT XXT +vYT
m We want that BXT + CYT = O and XXT + YYT = aE.
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m Let's try to find matrix A in form A = ( B ¢ )

X Y
B C BT XT
T _
= AA _(X Y)(CT YT>

_( BBT +cCT BXT +cYT

T\ XBT+YCT XXT 4+ vyyT

_ aE BXT +cCcyT

T\ XBT4+vYCT XXT4+vyyT"
m We want that BXT + CYT = O and XXT + YYT = aE.
m Inspired by case m =1, let’s try to take Y = B.
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m Note that B is invertible iff b % 0, since BBT = bE
(therefore B~ = %BT).

m Hence, B is invertible.
m Therefore, take Y = B.
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(therefore B~ = %BT).

m Hence, B is invertible.
m Therefore, take Y = B.

m And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.
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m Note that B is invertible iff b % 0, since BBT = bE
(therefore B~ = %BT).

m Hence, B is invertible.

m Therefore, take Y = B.

= And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.

m Finally, XXT + YYT =
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m Note that B is invertible iff b % 0, since BBT = bE
(therefore B~ = %BT).

m Hence, B is invertible.

m Therefore, take Y = B.

= And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.

m Finally, XXT + YYT =
= (—+BCTB)(—+BCTB)T + BBT
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m Note that B is invertible iff b % 0, since BBT = bE
(therefore B~ = %BT).

m Hence, B is invertible.

m Therefore, take Y = B.

= And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.

m Finally, XXT + YYT =
= (—+BCTB)(—+BCTB)T + BBT
= %5BCTBBTCBT + bE
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Note that B is invertible iff b # 0, since BBT = bE
(therefore B~ = %BT).

Hence, B is invertible.

Therefore, take Y = B.

And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.

Finally, XXT + YYT =

= (—+BCTB)(—+BCTB)T + BBT

= %5BCTBBTCBT + bE

= %BCTCBT + bE
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Note that B is invertible iff b # 0, since BBT = bE
(therefore B~ = %BT).

Hence, B is invertible.

Therefore, take Y = B.

And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.
Finally, XXT + YYT =

= (—+BCTB)(—+BCTB)T + BBT
= %5BCTBBTCBT + bE

= %BCTCBT + bE

= I—C)BBT + bE
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Proof of Lemma 1

Note that B is invertible iff b # 0, since BBT = bE
(therefore B~ = %BT).

Hence, B is invertible.

Therefore, take Y = B.

And from BXT + CYT = O, we find
X=-BCT(B )T =-1BCTB.
Finally, XXT + YYT =

= (—+BCTB)(—+BCTB)T + BBT
= %5BCTBBTCBT + bE

= I—I)BCTCBT + bE

= I—C)BBT + bE

= cE + bE = aE, and we are finished.
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Corollary 1

In any field F, the set of sums of n squares is closed under
multiplication when n = 2™. Further, the set of all nonzero
sums of n squares is a group under multiplication.
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wT = VTV = vE.
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m Take U and V to be matrices with first rows (u, ...

and (vi,...,Vp), such that UUT = UTU = uE and
w = VTV = vE.

m Take W = UV'T and let first row of W to be (w1, ...

7Un)

)

Wp).
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of this matrix we get
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mletu=uvi+...+udandv=vi+.. . +V2
Pfister's m Take U and V to be matrices with first rows (u1, ..., up)
e and (vi,..., V), such that UUT = UT U = uE and
Wi = VTV = vE.
m Take W = UV'T and let first row of W to be (wi, ..., w,).

m Then, WWT = UVTVUT = uvE, and taking (1,1) entry
of this matrix we get

m w@+ ...+ w2 = uv, ie. the product of two sums of n

squares is a sum of n squares.
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mletu=uvi+...+udandv=vi+.. . +V2

Pfister's m Take U and V to be matrices with first rows (u1, ..., up)

theorem

and (vi,...,Vp), such that UUT = UTU = uE and
w = VTV = vE.
m Take W = UV and let first row of W to be (w1, ..., w,).

m Then, WWT = UVTVUT = uvE, and taking (1,1) entry
of this matrix we get

m w@+ ...+ w2 = uv, ie. the product of two sums of n

squares is a sum of n squares.
m If u#0, then l=u—uz: (ﬂ)2+_“_|_(u )2.

Up
u u u
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If F is a field, and n = 2™ is a power of 2, then there is an
identity of form

R+ +.. ) i+yi+..y)=z2+Z+...25,

with zx € F(X1,X2, .« yXn, Y1, Y25 -+, ¥n), valid in F.
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again a sum of squares of n rational expressions in x;'s and
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m Apply Corollary 1 on field F(x1,...,Xn,¥1,---,¥n)-

m The sum of squares of x;'s times sum of squares of y;'s is
again a sum of squares of n rational expressions in x;'s and
yj's.

m Thus, that identity is valid in field F.

Pfister’s
theorem




Part Il

Pfister's
theorem

Die Stufe

Die Stufe




Die Stufe

Pfister's
theorem

SIEV)
Moconja

Definition
The smallest positive integer s such that —1 is sum of s
squares in a field F

il = e e e e (s

is called the Stufe of field F. We denote it s(F). If such S
doesn't exist then we put s(F) = oo and call F formally real.
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Die Stufe If s(F) < oo then it is a power of 2.

For every power of 2, n, there is a field F with Stufe s(F) = n.
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Let n =27 < s =s(F) < sm
Write 0 =a? + a3 +...a2+ a2 +... +a>+ 1.
= Take u=af + a3 +...a% and
v=al, +...+a2+1+0+...40.
m u,v # 0, otherwise s(F) < s.

Die Stufe

m u+v =0, hence u = —v, and therefore —1 = v/u.
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Let n =27 < s =s(F) < sm

Write 0 =a? + a3 +...a2+ a2 +... +a>+ 1.
= Take u=af + a3 +...a% and

v=al, +...+a2+1+0+...40.

u,v # 0, otherwise s(F) < s.

Die Stufe

u+v =0, hence u = —v, and therefore —1 = v/u.

By Corollary 1, —1 is a sum of n squares.
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mlet n=2"<s=s5(F)<sm™l

m Write0=a? +a3+...a2+ a4 +... +a>+ 1.
= Take u=af + a3 +...a% and

v=al, +...+a2+1+0+...40.

u,v # 0, otherwise s(F) < s.

Die Stufe

u+v =0, hence u = —v, and therefore —1 = v/u.
By Corollary 1, —1 is a sum of n squares.
Hence, s(F) = n=2".
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Some fact

Let R be the field of real numbers. Then x? + x3 + ...+ x2 is
not a sum of n — 1 squares in field R(x1, x2, ..., Xp).
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Proof of Theorem 4

For every power of 2, n, there is a field F with Stufe s(F) = n.
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m Let n =27, and let F = R(x1,x2,...,Xn+1,y) Where
y2+x12—|—...x3+1=0.
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Proof of Theorem 4

m Let n =27, and let F = R(xy, x,
y2+x12—|—...x3+1=0.
m We claim that s(F) = n=2".

«eyXnt1,Y) Where
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m Let n =27, and let F = R(x1,x2,...,Xn+1,y) Where
yz—i—xlz—l—...xrz,+1 =0.
Rt m We claim that s(F) = n=2".
nde m s(F) <n+1,since —12(%)2+...+(%)2, and

therefore s(F) < n (since it has to be power of 2).
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Proof of Theorem 4

m Assume that s = s(F) < n.
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Proof of Theorem 4

m Assume that s = s(F) < n.
m Write 0 = tZ + ...+ t2, not all t;'s are zero,
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Proof of Theorem 4

m Assume that s = s(F) < n.

m Write 0 = tZ + ...+ t2, not all t;'s are zero,

and tx = ax + bry, ak, bk € R(xq, ..

: 7Xn+1)-
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Proof of Theorem 4

m Assume that s = s(F) < n.
m Write 0 = tZ + ...+ t2, not all t;'s are zero,
and tyx = ax + byy, ak, bx € R(Xl, R ,X,,+1).

= Now we have
0=>"(ak+ bky)?>=> a2 +2y > akbx +y? > b2.
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Proof of Theorem 4

m Assume that s = s(F) < n.
m Write 0 = tZ + ...+ t2, not all t;'s are zero,
and tyx = ax + byy, ak, bx € R(Xl, R 7Xn+1)-

= Now we have

0=">(ax+bry)® = a; +2y > axbk +y* > b
m And from there 0 = 3" a2 + y2> b2 and 0 = > axby.
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Proof of Theorem 4

= Not all a,'s are zero, otherwise > b2 = 0, hence all by's
are zero (since R(xy, . ..xp+1) is formally real).
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Proof of Theorem 4

= Not all a,'s are zero, otherwise > b2 = 0, hence all by's
are zero (since R(xy, . ..xp+1) is formally real).

m Not all by's are zero, because of the same reason.
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= Not all a,'s are zero, otherwise > b2 = 0, hence all by's
are zero (since R(xy, . ..xp+1) is formally real).

m Not all by's are zero, because of the same reason.
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Proof of Theorem 4

= Not all a,'s are zero, otherwise > b2 = 0, hence all by's
are zero (since R(xy, . ..xp+1) is formally real).

m Not all by's are zero, because of the same reason.
m Hence

XEt.xi =—yr=2a /Y k=t +... +
m This contradiction shows us that s(F) = n=2".
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Theorem 2

If n is not a power of two, then there exists some field F such

Proofs of

Theorems 4 that there is no identity

and 2

with zx € F(Xx1,X2, ..., Xn, Y1, Y2, -, ¥n), valid in F.
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Proof of Theorem 2

m Let 2" 1 < n< 2™ =5, and let F be a field having Stufe
2m,
m Thena?+...+a2+a2 ,+...+a2+1=0.
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m Let 2" 1 < n< 2™ =5, and let F be a field having Stufe
2m.

m Thena?+...+a2+a2 ,+...+a2+1=0.

mletu=al+...4+a2andv=2a2,+...+a2+1.
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Proof of Theorem 2

m Let 2" 1 < n< 2™ =5, and let F be a field having Stufe
2m.

m Thena?+...+a2+a2 ,+...+a2+1=0.

mletu=al+...4+a2andv=2a2,+...+a2+1.

® U, v are non-zero sums of n squares.
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Proof of Theorem 2

Let 2™~ 1 < n < 2™ =5, and let F be a field having Stufe
2m.

Thena?+...+a2+a2,;+...+a2+1=0.
letu=ai+...+a3andv=2a2,+...+a2+1

u, v are non-zero sums of n squares.

If there is identity

CT+5+.. ) i+ys+..¥v)=z+z+...2,

valid in F, we would have —1 = v/u = b? + ...+ b2.
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Proof of Theorem 2

Let 2™~ 1 < n < 2™ =5, and let F be a field having Stufe
2m.

Thena?+...+a2+a2,;+...+a2+1=0.
letu=ai+...+a3andv=2a2,+...+a2+1

u, v are non-zero sums of n squares.

If there is identity

CT+5+.. ) i+ys+..¥v)=z+z+...2,

valid in F, we would have —1 = v/u = b? + ...+ b2.

Therefore, s(F) < n < 's, which is contradiction.
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Thanks for your attention...
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