Cryptography is not just Encryption -
Obfuscation
Autumn School of Algebra 2015

Martin Mach

21.11.2015

@ Some examples

@ Obfuscation under VBB security
@ Weaker definitions

@ Functional encryption

2/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ Do not let anyone to copy our program/algorithm
@ Hide a password written in the program

3/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ Do not let anyone to copy our program/algorithm
@ Hide a password written in the program

class Program

i
static void SuperSecretPasswordProtectedStuff(string passwd)
if (passwd == "SuperSecretPassword")
Console.Writeline("Congratulations. Here's some super secret private information:\n");
i
else
Console.WriteLine{"Wrong password, fool.\n"});
i
static void Main(string[] args)
i
string passwd = Console.In.Readline();
supersecretPasswordProtectedStuff(passwd);
H
i

3/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ Compiled program:

4D5A 9000 0300 0000 0400 0000 FFFF 0000 MZ Ti..
Bg00O 0000 0000 QOO0 4000 0000 Q000 QQOOOD ,....... Bovun..
Q000 0000 0000 QOO0 OOODO 0000 Q000 000D .. .v v e iv e nnnnnn
Q000 0000 0000 QOO0 OOOO 0000 BOOD Q000De.eiuuonn €...
ODEL1F BAODE 00B4 09CD 21BE 014C CD21 5468 ..°.. .I!,.LI!Th

6973 2070 TZ2eF 6772 6leD 2063 6leE 6E6F 1i= program canno
T420 6265 2072 TS5eE 2069 6E20 444F 5320 t be run in DOS

6D6F 6465 2ZEOD ODOA 2400 0000 0000 0000 mode....5.......
5045 0000 4CO01 0300 7BSC 4D56 0000 0000 PE..L...{xMV....
0000 0000 EQOOQ 2200 OBO1 3000 O00& 00002."...0.....
0008 0000 0000 0000 26295 0000 0020 Q0000 E) o wa
0040 0000 0000 4000 0020 0000 0002 0000 .B....E8..

0400 0000 0000 Q000 0600 0000 Q0000 000D .. .v v e iv v e nnnnnn
0080 0000 0002 Q000 OOOOD 000D 0300 BOBE: .E€............ -
Q000 1000 0010 QOO0 OOODOD 1000 0010 000D .. .ov v e iv e e ennnan
Q000 0000 1000 QOO0 OOO0OD 0000 Q0000 000D .. .v v e iv e nnnnnn
D328 0000 4FD0 0OODO 0040 0000 BCOS 0000 O(..0....8...h...
Q000 0000 0000 QOO0 OOODO 0000 Q000 000D .. .v v e iv e nnnnnn
0080 0000 OCOO 0000 2428 0000 1CO0 Q0000 .7 2

4/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ In the hexa code of the compiled program:

7389 oFeE ©696E €700 5374 7269 eE&7 0050 =ioning.S5tring.F
T2eF o772 e6leD 0053 7973 T4e5 eD0O0 €765 rogram.System.ge
T45F 496€E 004D 6169 €ECO 4Fe2 6675 7363 t_In.Main.Obfusc
8174 o96F BEOQ 5379 7374 656D 2ZESZ2 6566 ation.System.Ref
eCes 8374 696F 6EQ0 5465 7874 5265 €le4 lection.TextRead
68572 002E 6374 €F72 0053 7973 7465 €D2ZE er..ctor.System.
4469 ©leT GEeF T3T4 €963 T300 5379 7374 Diagnostics.Syst
656D 2E52 TSeE T469 eDeS ZE49 6ET4 €572 em.Runtime.Inter
eF70 5365 T2T7e €963 €573 0053 T973 7465 opServices.Syste
6D2E 5275 BET4 €960 ©52E 436eF 6DT0 €%6C m.Runtime.Compil
68572 5365 T2Te €963 €573 0044 6562 7567 erServices.Debug
6769 BE6T 4DeF 6465 7300 €172 €773 004F gingModes.args.O0
626 6563 T400 BFT0 5F45 T175 6l6C 6974 bject.op_Egualit
7900 0000 0027 S300 7500 TOOO &S00 T200
5300 o500 &300 7200 €500 7400 5000 €100
7300 7300 TT00 €FO0O0 7200 &400 0080 Ag943

5/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ This can be fix by usage of a hash of the password

6/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Why to Obfuscate Programs?

@ This can be fix by usage of a hash of the password
@ But there is still some work with obfuscation of this program:

7900 0000 0027 5300 7500 TO0O €500 7200 w....'S.u.p.e.r.
5300 6500 6300 7200 €500 7400 5000 6100 S5.e.c.r.e.t.P.a.
7300 7300 7700 6FO0O0 7200 6400 0080 RA9S43 =s.s5.w.o.r.d..€@
006F 006E 0067 0072 0061 0074 0075 006C
0061 0074 0069 006F OD6E 0073 O02E 0020
0048 0065 0072 0065 0027 0073 0020 0073
006F 006D 0065 0020 0073 0075 0070 0065
0072 0020 0073 0065 0063 0072 0065 0074
0020 0070 0072 0069 0076 0061 D074 0065
0020 0069 D0GE 0066 OD6F 0072 006D 0061
0074 0069 006F OODGE OO3RA 0020 0042 004C
0041 0048 002C 0020 0042 004C 0041 0048
002C 0020 0042 004C 0041 0048 0020 0ODZE
002E 002E 000& 0001 2D57 0072 D06F 0OO6GE
0067 0020 0070 0061 0073 0073 0077 006F
0072 0064 002C 0020 0066 O006F D06F 006C
002E 000A 0000 0000 S7TER E105 35EE AZ4]1
9718 8068 E684 9340 0004 2001 0108 0320

6/40 Martin Mach Cryptography is not just Encryption - Obfuscation

IOCCC

@ The International Obfuscated C Code Contest

@ Goal is to write the most Obscure/Obfuscated C program within
the rules.

@ Some exmaples:

7/40 Martin Mach Cryptography is not just Encryption - Obfuscation

IOCCC

@ Fly simulator

@ Less then 2 kilobytes of code

@ Complete with relatively accurate 6-degree-of-freedom dynamics,
loadable wireframe scenery, and a small instrument panel.

Untitled

8/40 Martin Mach Cryptography is not just Encryption - Obfuscation

IOCCC

#include
#include
#include
#include

xoperDisplay(0)
3 scanf ("w1T%1T%1 Y+) ’H
0,0,whiterixel (e, D) J KeyF‘r"essMask) Fur(mapwmdow(e zj, H
;K= cos3); * *

singil;

Xc]ear‘WImjw(E z);

E,E* d/»('-EL+v+B/K F#D]%_

0|k <Fabs (W=T*r-I*E +D* F')
3 N-1E4&& XDrawLine(e ,z,k,N ,U,q,C); N=q; U=C;] ++p: } L+=_= (XU +P*M+m=1); T=X"X+ 1=1+M =M;
XBrawstring(e,z,k ,20,380,7,17); Dev/i=15; ir=(B *1-M*r “X°2)7_; fer(; xPending(e); u f{s.—

<math. h>
<sys/time. >

:n[393],3=33

2
G k; main(){ Displayre=

Z:Rcmnﬂndw(e Dj, for (xsetForegroundie,k=xcreatecC (e,z,0,0),BlackPixel(e,0))

xcreatesmp'lem dw(e z,0,0,400 400,

T1; ¥ +1); x5e1ec:1npu:(e,
in(0)){ struct :1meva'| &=f o

os{ 0), B—
D- E; P=w -T#D; for (o+=(I=D*W+E

i3 [p]-L; K=D*m-B*T-H*E; 1f(p [n]+w[pl+p[s
*D+Z '-'T—a "EJ> KJN:1e4, e'lie{ q=W/K *4E2+2e2Z; c— zEzMez/ K

a1
\fabs(D

D1
XEvent z; XNextEvent(e ,&z);
++# ((N=XLookupKeysym
(&z . xkey,0))-IT
N-LT? UP-N7&
J:& u &h); -
DN -N? N-DT 7N==
RT?&U: & Widhidd

)i } m=15@F/1;
c+=(I=M/ 1,1*H
+I*M+a*)()

m/zz— ‘-‘T/24

)/5;
h= 1e4/1 (T+

spr .
"ssd w2d”
"%?d"

¢
0“57 3)9«0550)(1nt)1)

9/40 Martin Mach

Cryptography is not just Encryption - Obfuscation

IOCCC

@ Coder form ASCII to Morse alphabet and vice versa

#'i nclude<stdio. h> #include<string. h> main(}{char%o,1[999]=
oM\177~[xp . -\ORABINIGHKAO+AZM (*0ID5S7 $3G1FEL";while(o=

ets%'l+45,954,5td'in)){*'|=0[5tr'|en(0) [0-1]=0,strspn(o,1+11)];

w ile(*0)switch((®*1&&isalnum(*0))-'*1){case-1:{char*I=(0+=

strSE'n(O L 1+12)+1)-2,0=34; wh11e(*1&3&&(0 (o- 16<<1)+‘°‘I———’—’)<Bl})
utc ar(0&937‘°‘1&8||'(I= memchr(44 3) PR aI-1+447:32

reak;case 1: ;}*1=(*0&31)[1 15+(‘*0>61)‘*32] wh1'|e(putchar(45+""l%2)

(*1=""I+32:>>1)>35) case O:putchar ((++0,32)); }putchar(ll}) 1

10/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Section 2

Obfuscation under VBB Security

11/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Boolean Circuit

@ Model of boolean function f: {0,1}" — {0,1}"
@ Composed of AND, OR and NOT gates

a
b

L

bo

12/40 Martin Mach

Cryptography is not just Encryption - Obfuscation

Virtual Black Box

@ Program/object which is viewed only in terms of its inputs and
outputs

Stimulus Response

13/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Obfuscation under VBB Security

Definition (Obfuscator of circuits under Virtual Black Box security)
O is an obfuscator of circuits if

@ Correctness: Ve circuit, O(c) = c.

@ Efficiency: Ve circuit, |O(c)| < poly(|cl).

@ VBB:VA, Ais bounded, 3S PPT simulator s.t. V¢ circuit:

PrIA(O(e)) = 1] Pr [(1) =1]| < u(lel),

where 1 is a negligible function.

14/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Obfuscation under VBB Security

Definition (Obfuscator of circuits under Virtual Black Box security)
O is an obfuscator of circuits if

@ Correctness: Ve circuit , O(c) = c.

@ Efficiency: Ve circuit, |O(c)| < poly(|c|).

© VBB: VA, Ais bounded, 3S PPT simulator s.t. V¢ circuit:

PrA(O(e) = 1] - Pr[s° (1) =1]| < u(leh,

where 1 is a negligible function.

@ Having access to the obfuscaded program is the same as having
access to the program only as black box.

14/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Impossibility of Obfuscation under VBB Security

Theorem (Impossibility of obfuscation under VBB securit)
Obfuscators of circuits under VBB security do not exists.

Source: On the (Im)possibility of Obfuscating Programs, B. Barack
and collective, 2001

15/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Section 3

Weaker Definitions

16/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Indistinguishability Obfuscation

Definition (Indistinguishability Obfuscator for circuits)

We call /O an indistinguishability obfuscator for a circuit class {C,} if

@ Correctness: V) € N security parametr, VC € Cy, Vx input, we
have that

Pr[C'(x) = C(x) : C' « iO(), C)] = 1.

@ Polynomial slowdown: 3p polynom s.t. VC € C,, we have
|C'| < p(|C]|), where C' = iO(A, C).

© Computaitonal indistinguishability: Suppose that
Vx : Co(x) = Cy(x) then for any PPT adversaries Samp, D, 3. a
negligible function s.t.:

| Pr[D(o,iO(\, Co)) = 1 : (Co, C1,0) + Samp(1*)] —
— Pr [D(c,iO(\, Cr)) = 1: (Co, Cy,) « Samp(1*)] | < u(N).

17/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Indistinguishability Obfuscation

@ Given two programs computing the same output for all inputs

@ It is impossible distinguish between obfuscations of these
programs

18/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Definition (Differing-inputs Obfuscator for circuits)
We call diO a Different-inputs obfuscator for a different-inputs circuit
class C = {C,} if
@ Correctness: V) € N security parametr, VC € C, Vx input, we
have that

Pr[C'(x) = C(x) : C' « diO(), C)] = 1.

@ Polynomial slowdown: 3p polynom s.t. VC € C circuit, we have
|C'| < p(|C]|), where C' = diO(\, C).

© Different-inputs: For any PPT distinguisher D, for
(Co, C1,0) < Samp(1?), i a negligible function s.t.: VA € N
security parametr and Vx holds:
Pr[Co(x) = Ci(X) : (Co, C1,0) < Samp(1*)] > 1 — pu(X). Then
we have:

IPr[D(diO(A, Co), o) = 1] = Pr[D(diO(X, C1),0) = 1]| < u(A).

y

19/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

@ Given two programs computing the same output for nearly each
input
@ ltis hard to find the input where the programs differ

@ Then itis also hard to distinguish between obfuscations of these
programs

20/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Theorem (Relation between and)
Every diO obfuscator is also a i©O obfuscator.

21/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Theorem (Relation between and)
Every diO obfuscator is also a i©O obfuscator.

@ Definitions of /O and di© differs in assumption, which pairs of
circuits Cy, Cy are considered:

21/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Theorem (Relation between and)
Every diO obfuscator is also a i©O obfuscator.

@ Definitions of /O and di© differs in assumption, which pairs of
circuits Cy, Cy are considered:

e i0: Co(x) = Ci(x),

21/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Theorem (Relation between and)
Every diO obfuscator is also a i©O obfuscator.

@ Definitions of /O and di© differs in assumption, which pairs of
circuits Cy, Cy are considered:
e i0: Co(x) = Ci(x),
@ diO: Pr[Co(x) = Ci(x)] > 1 — p(A) for X security parametr, . a
negligible function.

21/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Differing-inputs Obfuscation

Theorem (Relation between and)
Every diO obfuscator is also a i©O obfuscator.

@ Definitions of /O and di© differs in assumption, which pairs of
circuits Cy, Cy are considered:
e i0: Co(x) = Ci(x),
@ diO: Pr[Co(x) = Ci(x)] > 1 — p(A) for X security parametr, . a
negligible function.

@ If Co(x) = Ci(x) then the condition for diO is fulfilled.

21/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation
Definition (Best-possible Obfuscator for circuits)

We call bO a Best-possible obfuscator for a circuit class C if
@ Correctness: V) € N security parametr, VC € C, Vx input, we

have that
Pr[C'(x) = C(x) : C' + bO(\,C)] = 1.

= bO(), C).

|C'| < p(|C]|), where C’
© Best-possible: For any PPT learner L, 3S simulator s.t.: for
(Co, C1,0) < Samp(1?), |Co| = | C4], for every input x is

@ Polynomial slowdown: 3p polynom s.t. VC € C circuit, we have

Co(x) = Cy(x). Then:
where A = B means that two distributions A and B are

computationally indistinguishable.
Cryptography is not just Encryption - Obfuscation

22/40 Martin Mach

Best-possible Obfuscation

@ Given program Cy

@ Let Cy be any program of similar size computing the same
function as Gy

@ Everything what can be extracted from obfuscated bO(Cy) can
be also extracted from C;

23/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)

The obfuscator O is a bO obfuscator if and only if it is an iO
obfuscator.

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)

The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

<

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)

The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

e Cy, C; two programs of similar size computing the same
functionality

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO
obfuscator.

| \

Proof.
@ bO=i0
e Cy, C; two programs of similar size computing the same

functionality
e Consider an empty learner L who outputs whatewer obfuscation is

given

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

e Cy, C; two programs of similar size computing the same
functionality

e Consider an empty learner L who outputs whatewer obfuscation is
given

e Sis a PPT simulator

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

e Cp, C; two programs of similar size computing the same
functionality

e Consider an empty learner L who outputs whatewer obfuscation is
given

e Sis a PPT simulator

o Because O je Best-possible obfuscator, then L(O(Cy)) = S(Ci),

s0 also O(Cy) = S(Cy)

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

e Cp, C; two programs of similar size computing the same
functionality

e Consider an empty learner L who outputs whatewer obfuscation is
given

e Sis a PPT simulator

o Because O je Best-possible obfuscator, then L(O(Cy)) = S(Ci),

s0 also O(Cy) = S(Cy)
e Also L(O(C1)) £ S(Ci) and O(Cy) £ S(Cr)

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

e Cy, C; two programs of similar size computing the same
functionality

e Consider an empty learner L who outputs whatewer obfuscation is
given

e Sis a PPT simulator .

e Because O je Best-possible obfuscator, then L(O(Co)) = S(Cy),
s0 also O(Cy) = S(Cy)

e Also L(O(Cy)) = S(C1) and O(Cy) = S(C1)

e Computational indistinguishability is an equivalence and we have
0(Co) £ O(Cy)

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Theorem (Relation between and)
The obfuscator O is a bO obfuscator if and only if it is an iO

obfuscator.)
@ bO = iO

Co, Cq two programs of similar size computing the same
functionality

Consider an empty learner L who outputs whatewer obfuscation is
given

S is a PPT simulator

Because O je Best-possible obfuscator, then L(O(Cy)) = S(Cy),

s0 also O(Cy) = S(Cy)

Also L(O(Cy)) = S(C1) and O(Cy) = S(C1)

Computational indistinguishability is an equivalence and we have
0(Co) £ O(Cy)

Thanks to it there is not any PPT adversary D who can distinguish
between obfuscations of Cy and C4

v

24/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

@ iO = bO

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

@ iO = bO

e Cy, Cy two programs of similar size computing the same
functionality

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

@ 0= bO
e Cy, Cy two programs of similar size computing the same
functionality
e /O is indistinguishability obfuscator

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.
e /0= bO

e Cy, Cy two programs of similar size computing the same
functionality

e /O is indistinguishability obfuscator

o For every PPT learner L let S be PPT simulator that gets Cy, runs
iO(C1) and activates L on iO(Cy)

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

e /0= bO

e Cy, Cy two programs of similar size computing the same
functionality

e /O is indistinguishability obfuscator

o For every PPT learner L let S be PPT simulator that gets Cy, runs
iO(C1) and activates L on iO(Cy)

e From an indistinguishability assumption holds
L(I0(Co)) = L(I0(C)) = S(C)

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

@ iO = bO

e Cy, Cy two programs of similar size computing the same
functionality

e /O is indistinguishability obfuscator

o For every PPT learner L let S be PPT simulator that gets Cy, runs
iO(C1) and activates L on iO(Cy)

e From an indistinguishability assumption holds
L(I0(Co)) = L(IO(C)) = S(C)

e Thanks to it is /O a Best-possible obfuscator

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Best-possible Obfuscation

Proof - next part.

@ iO = bO

e Cy, Cy two programs of similar size computing the same
functionality

e /O is indistinguishability obfuscator

o For every PPT learner L let S be PPT simulator that gets Cy, runs
iO(C1) and activates L on iO(Cy)

e From an indistinguishability assumption holds
L(I0(Co)) = L(IO(C)) = S(C)

e Thanks to it is /O a Best-possible obfuscator

25/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Virtual Grey Box Obfuscation

Definition (Virtual Grey Box Ofuscator for circuits)
We call Oy, a Virtual Gray Box Obfuscator for a circuit class C if

@ Corretness: V) € N security parametr, VC < C, Vx input, we have
that

Pr{C'(x) = C(x) : C' + Oygp(A, C)] = 1.
@ Polynomial slowdown: 3p polynom s.t. VC € C circuit, we have
|C'| < p(|Cl|), where C" = Ogp(A, C).
© Virtual Grey Box: For every PPT adversary A, every predicate
m: C — {0,1}, A = |C| security parameter, there 3S an
unbounded simulator, g(-) polynom and a negligible function p
s.t.:

[Pr[A(06(C)) = 7(C)] — Pr [S%(1%) = (C)] | < (),

where Ciq(\)) is an oracle that allows at most g(n) queries.

26/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Virtual Grey Box Obfuscation

@ Relaxes the definition of VBB Obfuscator
@ Simulator S is unbounded
@ We still have a bounded number of oracle queries to C.

27/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Virtual Grey Box Obfuscation

Theorem (Relation between and)
A program O is a diO if and only if it's a Oy, obfuscator.

Source: On Virtual Grey Box Obfuscation for General Circuits,
N. Bitansky, R.Canetti, Y. T. Kalai and O. Paneth, 2014

28/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Section 4

Usage of Obfuscation

29/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functionality

Definition (Functionality)

A functionality F defined over (K, X) is a function

F: K x X — {0,1}*. The set K is called the key space, the set X is
called the plaintext space. The space key K contains a special key
called the empty key denoted e.

30/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functionality

Definition (Functionality)

A functionality F defined over (K, X) is a function

F: K x X — {0,1}*. The set K is called the key space, the set X is
called the plaintext space. The space key K contains a special key
called the empty key denoted e.

@ K is a set of functions on X

30/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Definition (Functionality)

A functionality F defined over (K, X) is a function

F: K x X — {0,1}*. The set K is called the key space, the set X is
called the plaintext space. The space key K contains a special key
called the empty key denoted e.

@ K is a set of functions on X
@ Functionality F describes the functions of a plaintext that can be
learned from ciphertext

30/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption

Definition (Functional encryption scheme)

A functional encryption scheme FE for a functionality F defined over
(K, X) is a tuple of four PPT algorithms (Setup, Key, Encrypt,
Decrypt) satysfying:
@ Correctness: Vk € K,Vx € X:

e generate a public and master key pair: (pk, mk) + Setup(1?),

@ generate secret key for k: skx <+ Key(mk, k),

@ encrypt message x: ¢ < Encrypt(pk, x),

e compute functionality from c: y < Decrypt(skk, c),

Then we require: Pry = F(k,x)] = 1.

31/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption

Definition (Functional encryption scheme)

A functional encryption scheme FE for a functionality F defined over
(K, X) is a tuple of four PPT algorithms (Setup, Key, Encrypt,
Decrypt) satysfying:
@ Correctness: Vk € K,Vx € X:

e generate a public and master key pair: (pk, mk) + Setup(1?),

@ generate secret key for k: skx <+ Key(mk, k),

@ encrypt message x: ¢ < Encrypt(pk, x),

e compute functionality from c: y < Decrypt(skk, c),

Then we require: Pry = F(k,x)] = 1.

@ A functional encryption enables to evaluate F(k, x) given the
encryption of x and secret key sk for k.

31/40 Martin Mach Cryptography is not just Encryption - Obfuscation

|dentity Based Encryption

@ Allows every party to generate a public key from known identity
value string

@ Trusted authority choose it's master private and master public key

@ Trusted third party generates private keys for individual users
public keys

32/40 Martin Mach Cryptography is not just Encryption - Obfuscation

|dentity Based Encryption

@ We can imagine IBE as evaluation of function on message
y = E(ld,x)

@ Function returns x only if identity /d is allowed to decrypt,
otherwise halts

33/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:

e We generate (pk, mk)

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:
e We generate (pk, mk)
o Attacker A declares two inputs x1, X2

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:
e We generate (pk, mk)
o Attacker A declares two inputs x1, X2
o Attacker is given a secret key sk for k such that
F(k,x1) = F(k, x2) for all required k

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:
e We generate (pk, mk)
o Attacker A declares two inputs x1, X2
o Attacker is given a secret key sk for k such that
F(k,x1) = F(k, x2) for all required k
e Ais given cyphertext ¢, = Encrypt(pk, myp), b € {0,1}

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:
e We generate (pk, mk)
o Attacker A declares two inputs x1, X2
o Attacker is given a secret key sk for k such that
F(k,x1) = F(k, x2) for all required k
Ais given cyphertext ¢, = Encrypt(pk, mp), b € {0,1}
Ais outputs b’ € {0, 1}

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Security Definition of Functional Eencryption

@ We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:
e We generate (pk, mk)
o Attacker A declares two inputs x1, X2
o Attacker is given a secret key sk for k such that
F(k,x1) = F(k, x2) for all required k
Ais given cyphertext ¢, = Encrypt(pk, mp), b € {0,1}
Ais outputs b’ € {0, 1}
There is 1« a negligible fuction s.t. Pr[b = b'] < § + p(\)

34/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

@ Encryption of a value x will be an encryption of x using the public
key pkp from the public-key encryption scheme

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption

@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

@ Encryption of a value x will be an encryption of x using the public
key pkp from the public-key encryption scheme

@ C is a circuit which is obfuscation of a program that uses skp to
decrypt x

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

@ Encryption of a value x will be an encryption of x using the public
key pkp from the public-key encryption scheme

@ C is a circuit which is obfuscation of a program that uses skp to
decrypt x

@ A secret key for functional encryption is sk which outputs C(x)

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

@ Encryption of a value x will be an encryption of x using the public
key pkp from the public-key encryption scheme

@ C is a circuit which is obfuscation of a program that uses skp to
decrypt x

@ A secret key for functional encryption is sk which outputs C(x)
@ This works for a Black-Box obfuscator

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Let’s construct scheme for functional encryption
@ /O is an indistinguishability obfuscator

@ (Setupp, Encryptp, Evalp, Decryptp) is a public-key encryption
scheme

@ Encryption of a value x will be an encryption of x using the public
key pkp from the public-key encryption scheme

@ C is a circuit which is obfuscation of a program that uses skp to
decrypt x

@ A secret key for functional encryption is sk which outputs C(x)
@ This works for a Black-Box obfuscator
@ An Indistinguishability obfuscator can leak skp

35/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

@ We require that the encryption of x consists of encryptions of x
under both keys, let's name them ey, ex

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

@ We require that the encryption of x consists of encryptions of x
under both keys, let's name them ey, ex

@ Receiver is not able to check that both cyphertexts encrypt the
same message

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

@ We require that the encryption of x consists of encryptions of x
under both keys, let's name them ey, ex

@ Receiver is not able to check that both cyphertexts encrypt the
same message

@ Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

@ We require that the encryption of x consists of encryptions of x
under both keys, let's name them ey, ex

@ Receiver is not able to check that both cyphertexts encrypt the
same message

@ Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message

@ Our NIZK system consists of three algorithms (Setupyz;
Provenizk, Verifyyzx)

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ We fix the problem with generating two public keys pkp, pk3

@ We require that the encryption of x consists of encryptions of x
under both keys, let's name them ey, ex

@ Receiver is not able to check that both cyphertexts encrypt the
same message

@ Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message

@ Our NIZK system consists of three algorithms (Setupyz;
Provenizk, Verifyyzx)

@ Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk}, to decrypt ey to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Now we construct another program, which checks the NIZK proof
then uses secret key sk3 to decrypt > to x

37/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Now we construct another program, which checks the NIZK proof
then uses secret key sk3 to decrypt > to x

@ Circuit C’ is an obfuscation of this program

37/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Now we construct another program, which checks the NIZK proof
then uses secret key sk3 to decrypt > to x

@ Circuit C’ is an obfuscation of this program

@ Using an indistinguishability obfuscator, we have C Zc

37/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability

Obfuscation

@ Now we construct another program, which checks the NIZK proof
then uses secret key sk3 to decrypt e to x

@ Circuit C’ is an obfuscation of this program
@ Using an indistinguishability obfuscator, we have C Zc
@ C’' computes the same as C but can't leak sk},

37/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability
Obfuscation

Schema (Functional Encryption from)

@ Input: ke K,xe X
@ Setup(1*) algorithm:
o Generate (pkp, sk}) < Setupp(17)
o Generate (pk3, skp) < Setupp(1?)
o Set mk = sk}
e Set CRS <« Setupyz« are data needed for the NIZK proof
o SetPP = {pk}, pks, CRS} as a public parametrs
@ Encrypt(PP, x) algorithm:
o Output c = (ey, €2,), where e, = Encrypt(pkp, x, CRS),
e> = Encrypt(pk2, x, CRS)
e 7 is a NIZK proof that both e, e> encrypt the same message

38/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Functional Encryption from Indistinguishability
Obfuscation

Schema (Functional Encryption from - Second part)

@ Key(mk, k) algorithm:
e Output a secret key skg. It is a program which we get as an
obfuscation of program Py which decrypts e using skp
o Secret key skk = iO(P1(e1, e2,)), where Py outputs
F(k, Decrypt,(skp, e1)) using k, skj, CRS
@ Decrypt(skk, c = (e1, e, m)) algorithm:
e Outputs the output of obfuscated program sk on input
c=(e1,e,m)
o Output is F(k, Decryptp(skp, e1))

39/40 Martin Mach Cryptography is not just Encryption - Obfuscation

Thank you for your attention!

J

	Introduction
	Obfuscation under VBB Security
	Weaker Definitions
	Usage of Obfuscation
	Functional Encryption

	Conclusion

