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Automatic sequences

Definition (k-automatic sequence)

An infinite sequence a = (an)n≥0 over a finite alphabet is said to be
k-automatic if there exists a deterministic finite automaton (with
output associated with the states) such that after completely
processing the input n expressed in base k , the automaton reaches
some state q with output an.

Thue-Morse sequence: t = t(0)t(1)t(2) . . . = 011010011001 . . .

Fibonacci-automatic sequences
Infinite Fibonacci word: f = f (0)f (1)f (2) . . . = 01001010 . . .

Tribonacci sequences
Tetranacci sequences
. . .
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Generating automatic sequence

0start 1

10

1

0

Finite automaton generating the Thue-Morse sequence t

Thue-Morse sequence t = t(0)t(1)t(2) . . . = 011010011001 . . .

t(n) is the sum, modulo 2, of the binary digits of n
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Structures and terms

Definition (Structure)

We call following S a structure

S =
〈
D, (Ri )i∈I , (fj )j∈J , (ck )k∈K

〉
D . . . a domain (some set)
(Ri )i∈I . . . a family of relations on D
(fj )j∈J . . . a family of functions from Dnj to D
(ck )k∈K . . . constants of D
The set {(Ri )i∈I , (fj )j∈J , (ck )k∈K} is called the language of the
structure S. In addition, symbols x , y , z, . . . ,∨,∧,¬,∀,∃,→,↔,= are
in S.

Definition (Term)

The terms are defined by induction following two rules:
1 any variable and constant is a term,
2 if fj is a n-ary function and t1, . . . , tn are terms, then fj (t1, . . . , tn) is

a term.
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Formulae

Definition (Formula)

The formulae are generated by four rules:
1 if t1, t2 are terms, then t1 = t2 is a formula,
2 if Ri is a n-ary relation and t1, . . . , tn are terms, then Ri (t1, . . . , tn)

is a formula,
3 if ϕ,Φ are formulae, then ϕ ∨ Φ, ϕ ∧ Φ,¬ϕ,ϕ→ Φ, ϕ↔ Φ are

formulae,
4 if ϕ is a formula and x is a variable, then ∀xϕ,∃xϕ are formulae.

Definition (Free variable)

We call free variable a variable in formula without quantifier.

Definition (Sentence)

We call sentence a formula without free variable.
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Theories and equivalent structures

Definition (Decidable theory)

Given a structure S, the set of the sentences true for S is the theory
of S, denoted by Th(S).
The theory Th(S) is called decidable if there exists an algorithm
which decides if any sentence of S is true or false for S.

Definition (Equivalent structures)

We say that the structures S and S′ with the same domain D are
equivalent if the sets definable in S are the same as in S′.

Lemma

Structures 〈ω,+〉 and 〈ω,+,≤〉 are equivalent.

Just consider formula (∃z)(x + z = y) in 〈ω,+〉.
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Presburger artihmetic

Definition (Presburger arithmetic)

We call the theory Th(〈ω,+〉) Presburger arithmetic.

”Chicken McNuggets” theorem can be described in Presburger
arithmetic:

(∀n > 43∃x , y , z ≥ 0 such that n = 6x + 9y + 20z)∧

¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z)
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Number representation

Σ = {0,1} . . . binary alphabet

Σn =




0
...
0
0

 ,


0
...
0
1

 , . . . ,


1
...
1
1


 . . . n-tuples of integers

B = {w ∈ Σ∗3|the bottom row of w is the sum of the top two rows}

For example

 0
0
1


 1

0
0


 1

1
0

 ∈ B
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Checking addition in Presburger arithmetic

q1start q2

{[a,b, c] : a + b + 1 = c}

{[a,b, c] : a + b = c}

{[a,b, c] : a + b = c + k}

{[a,b, c] : a + b + 1 = c + k}

Checking addition with carry in base k
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Definability of sequences

Let p ≥ 2 and s : ω → A be a sequence with values in a finite
alphabet A ⊂ ω.

Definition (p-definability)

Consider the structure〈ω,+,Vp〉, where the function Vp is defined as
Vp(x) = pn, where pn is the greatest power of p dividing x (x 6= 0)
Vp(0) = 1.
A sequence s is p-definable if for each letter a ∈ A, there exists a
first-order formula φa of 〈ω,+,Vp〉 such that

s−1(a) = {n ∈ ω |φa(n) is true in 〈ω,+,Vp〉}
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Example: 2-automatic sequence

Let p : ω → {0,1} be the characteristic sequence of the powers of 2:

011010001000000010 . . .

pn = 1 if n is power of 2, pn = 0 otherwise

p is 2-automatic:
The sequence p is computed by the following finite automaton
with output.

q1/0start q2/1 q3/01

0

1

0 0,1

An automaton computing p in base 2
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Example: 2-definable sequence

Let p : ω → {0,1} be the characteristic sequence of the powers of 2:

011010001000000010 . . .

pn = 1 if n is power of 2, pn = 0 otherwise

p is 2-definable:
Let P2(x) be the formula V2(x) = x ; then

p−1(1) = {n ∈ ω |P2(n) is true in 〈ω,+,V2〉}

p−1(0) = {n ∈ ω |P2(n) is false in 〈ω,+,V2〉}
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p-automatic vs. p-definable

Theorem
Let p ≥ 2 and s : ω → A be a sequence with values in a finite
alphabet A ⊂ ω. Then s is p-automatic if and only if s is p-definable.

Theorem
Let p ≥ 2,m ≥ 1 and s : ωm → A be a sequence. Then s is
p-automatic if and only if s is p-definable.
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p-automatic sets

Definition
Let p ≥ 2,m ≥ 1 and M ⊆ ωm. We say that M is p-automatic if its
characteristic sequence sM : ωm → {0,1} defined by

sn = 1↔ n = (n1, . . . ,nm) ∈ M

is p-automatic.

Equivalently M is p-automatic if and only if there is a finite automaton
accepting set {w ∈ {0, . . . ,p − 1}∗ | [w ]p ∈ M}
where [w ]p = w0pk + w1pk−1 + . . .+ wk p0
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p-definable sets

Definition
Let m ≥ 1. We say that set M ⊆ ωm is p-definable if there exists a
formula φ such that

M = {(n1, . . . ,nm) ∈ ωm |φ(n1, . . . ,nm) is true in 〈ω,+,Vp〉}

The set of powers of 2 is 2-definable.
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Characterisation of p-automatic sets

Theorem
Let m ≥ 1 and M ⊆ ωm. Let p ≥ 2. Then M is p-automatic if and only
if M is p-definable.

←: Take formula φ of 〈ω,+,Vp〉 defining

Mφ = {(n1, . . . ,nm) ∈ ωm |φ(n1, . . . ,nm) is true in 〈ω,+,Vp〉}

Construct a finite automaton Aφ computing Mφ

For simplicity, we’ll work with structure
〈
ω,R+,RVp

〉
R+(x , y , z) is relation x + y = z
RVp (x , y) is relation Vp(x) = y〈
ω,R+,RVp

〉
is equivalent to 〈ω,+,Vp〉
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Proof - equality

Sets M=,M+,MVp are p-automatic. They are accepted by automata
A=,A+,AVp

q1start q2
{[a,b] : a 6= b}

{[a,b] : a = b} {[a,b]}

Automaton A= checking equality in base p
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Proof - addition

q1start q2

{[a,b, c] : a + b + 1 = c}

{[a,b, c] : a + b = c}

{[a,b, c] : a + b = c + p}

{[a,b, c] : a + b + 1 = c + p}

Automaton A+ checking addition with carry in base p
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Proof - the greatest power of p

q0start q1 q2

q3

0
0

1
1

0
1

0
0

1
1

0
1

0 1
0,0

Automaton AV2 in base 2

Now by induction assume that automata Aϕ and Aψ are constructed.
Obtain automata Aϕ∨ψ,A∃xϕ,A¬ϕ.
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The finish

Corollary

Th (〈ω,+〉) and Th (〈ω,+,Vp〉) are decidable theories.

Corollary

There is an algorithm that, given a predicate phrased using only the
universal and existential quantifiers, indexing into a given automatic
sequence a, addition, subtraction, logical operations, and
comparisons, will decide the truth of that proposition.
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