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Motivation

DLP - definition

Definition (Discrete logarithm problem (DLP), additive notation)

DLP in group G = 〈P〉 of order n is the problem, given P and Q, of
finding the integer x ∈ {0, 1, ..., n − 1} such that Q = xP .
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Motivation

DLP - example, the easy one

Z19 = 〈3〉 = {0, 1, 2, ..., 18}
Can we find log3 7?

Yes, we know that

gcd(3, 19) = 1 = 13 · 3 + 1 · 19

and that is why we have

7 = 7 · 13 · 3 + 7 · 1 · 19 mod 19

and we get
7 = 15 · 3 mod 19.

Radka Luňáčková Pairing-based cryptography I – Pairing basics 21.11.2015 4 / 26



Motivation

DLP - another examples, the difficult ones

Z∗p, where p is prime number

cyclic subgroups of elliptic curves over finite fields

We do not know any effective algorithm.

These cases are interesting for cryptography.
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Motivation

DHP - definition

Definition (Diffie-Hellman problem (DHP), additive notation)

DHP in group G = 〈P〉 of order n is the problem, given P , aP and
bP , of finding abP , where a, b ∈ {0, 1, ..., n − 1}.

DHP reduces in polynomial time to the DLP.

It is generally assumed, for some cases proven, that the DLP
reduces in polynomial time to the DHP.
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Motivation

Diffie-Hellman key agreement

public knowledge: the parameters n and P of group for which
the DHP is intractable

Two-party one-round key agreement protocol: K = abP

Three-party two-round key agreement protocol: K = abcP
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Bilinear pairing

Bilinear pairing - definition

Definition (Bilinear pairing)

Let n be a prime number. Let G1 = 〈P〉 be an additively-written
group of order n with identity O and let GT be a
multiplicatively-written group of order n with identity 1. A bilinear
pairing on (G1,GT ) is a mapping ê : G1 × G1 → GT that satisfies the
following conditions:

1 bilinearity:
ê(R + S ,T ) = ê(R ,T )ê(S ,T )

ê(R , S + T ) = ê(R , S)ê(R ,T )

for all R , S ,T ∈ G1,

2 non-degeneracy: ê(P ,P) 6= 1,

3 computability: ê can be efficiently computed.
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Bilinear pairing

Bilinear pairing - properties

For all S ,T ∈ G1 following hold:

1 ê(S ,O) = 1 and ê(O, S) = 1 ,

2 ê(S ,−T ) = ê(−S ,T ) = ê(S ,T )−1 ,

3 ê(aS , bT ) = ê(S ,T )ab for all a, b ∈ Z ,

4 ê(S ,T ) = ê(T , S) ,

5 If ê(S ,R) = 1 for all R ∈ G1, then S = O.
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Bilinear pairing

Bilinear pairing - properties - proofs (1)

For all S ,T ∈ G1 following hold:
1 ê(S ,O) = 1

ê(S , S) = ê(S , S +O) = ê(S , S)ê(S ,O)

2 ê(S ,−T ) = ê(S ,T )−1

1 = ê(S ,O) = ê(S ,T − T ) = ê(S ,T )ê(S ,−T )

3 ê(aS , bT ) = ê(S ,T )ab for all a, b ∈ N

ê(aS , bT ) = ê(aS ,T + T + ... + T ) = ê(aS ,T )b

and also

ê(aS ,T )b = ê(S + S + ... + S ,T )b = ê(S ,T )ab
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Bilinear pairing

Bilinear pairing - properties - proofs (2)

For all S ,T ∈ G1 following hold:

1 ê(S ,T ) = ê(T , S)

ê(S ,T ) = ê(kP , lP) = ê(P ,P)kl

and on the other hand

ê(T , S) = ê(lP , kP) = ê(P ,P)kl

2 ê(S ,R) = 1 ∀R ∈ G1 ⇒ S = O

1 = ê(S , S) = ê(kP , kP) = ê(P ,P)2k ⇒ k = 0
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Bilinear pairing

Bilinear pairing and DLP

DLP in G1 can be reduced to the DLP in GT .

Let P and Q be an instance of the DLP in G1, where Q = xP , then
we have g = ê(P ,P) and h = ê(P ,Q) = ê(P , xP) = ê(P ,P)x ,
elements of GT .

Now it is clear that x = logP Q = logg h.
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Bilinear pairing

BDHP - definition

Definition (Bilinear Diffie-Hellman problem (BDHP))

Let ê be a bilinear pairing on (G1,GT ). The BDHP is the problem of
computing ê(P ,P)abc , given P , aP , bP and cP .

If the DHP in G1 can be efficiently solved, then one could solve
an instance of the BDHP by computing abP and then
ê(abP , cP) = ê(P ,P)abc .

If the DHP in GT can be efficiently solved, then the BDHP
could be solved by computing
g = ê(P ,P), g ab = ê(aP , bP), g c = ê(P , cP) and then
g abc = ê(P ,P)abc .

The BDHP is generally assumed to be just as hard as the DHP in G1

and GT .
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Bilinear pairing

Three-party one-round key agreement protocol

public knowledge: bilinear pairing ê on (G1,GT ) for which the BDHP
is intractable

K = ê(P ,P)abc = ê(bP , cP)a = ê(aP , cP)b = ê(aP , bP)c
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Application

Short signatures

short digital signatures

RSA schemes (1024-bit modulus) have 1024 bits long signatures
DSA schemes (1024-bit modulus) have 320 bits long signatures

Short signatures are 170 bits long with the level of security
similar to those above.
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Application

BLS short signature scheme

BLS - Boneh, Lynn and Shacham

public knowledge:
bilinear pairing ê on (G1,GT ) for which the DHP in G1 is
intractable
hash function H : {0, 1}∗ → G1 \ {O}
key generation: Alice’s private key is a randomly selected secret
integer a ∈ {1, ..., n − 1}, while her public key is A = aP .

signing: Alice’s signature on a message m ∈ {0, 1}∗ is the
element of G1: S = aM , where M = H(m).

verification: Everyone who has Alice’s public key can verify the
signature by computing M = H(m) and checking that
ê(P , S) = ê(A,M).
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Application

BLS short signature scheme - how it works (1)

Definition (decisional Diffie-Hellman problem (DDHP))

Let G be a cyclic group, G = 〈P〉, of order n. The DDHP in G is to
decide whether a given quadruple (P , aP , bP , cP) of elements in G is
DH-valid, i.e. cP = abP .

If G from the definition above is G1 from bilinear pairing ê on
(G1,GT ), then DDHP could be efficiently solved by computing

γ1 = ê(P , cP) = ê(P ,P)c and γ2 = ê(aP , bP) = ê(P ,P)ab,

then
cP = abP ⇔ γ1 = γ2.
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Application

BLS short signature scheme - how it works (2)

Verification of BLS short signature is actually checking that
(P ,A,M , S) is DH-valid.

Attacker needs to compute S = aM for given P ,A,M = H(m),
which is precisely an instance of the DHP in G1.
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Weil pairing

Elliptic curve - definition

Definition (Elliptic curve)

Let K be an algebraically closed field and assume that K has
characteristic different from 2 and 3. Then we can define elliptic
curve E over K by equation

y 2 = x3 + ax + b,

where a, b ∈ K and 4a3 + 27b2 6= 0. The set of points of E over K is
denoted E (K ) and defined by

E (K ) =
{

(x , y) ∈ K × K : y 2 = x3 + ax + b
}
∪ {O} .

Fact: E (K ) forms a group, (E (K ),+,−,O).
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Weil pairing

Divisor - definition

Definition (Divisor)

Let E be an elliptic curve over K . A divisor D is formal sum of points
of E :

D =
∑

P∈E(K)

nP〈P〉,

where nP are integers and nP = 0 except for finitely many P ∈ E (K ).

Note: The angle brackets just indicate that we mean divisor and not
the sum of points.
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Weil pairing

Principal divisor - definition

Note: Let K (E ) denote the fraction field of K [x , y ] /f (x , y), where
f (x , y) = y 2 − x3 − ax − b and a, b are from the definition of E .

Definition (Principal divisor)

Let E be an elliptic curve over K and r ∈ K (E ). Then we can define
divisor of r as

div(r) =
∑

P∈E(K)

mP〈P〉,

where mP is the multiplicity of P as a root of r . Divisor D is called
principal, if there is any s ∈ K (E ) : D = div(s).
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Weil pairing

Weil pairing - definition

Fact: D = m 〈P〉 −m 〈O〉 is principal divisor. Let fP denote the
element of K (E ) : div(fP) = D.

Definition (Weil pairing)

Let E be an elliptic curve over K and let m > 0 be an integer prime
to characteristic of K . The Weil pairing is a mapping
w : E [m]× E [m]→ K defined by

w(P ,Q) = (−1)m
fP(Q)

fQ(P)

fQ
fP

(O),

where E [m] = {P ∈ E (K ) : mP = O}.
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Weil pairing

Weil pairing - properties

Weil pairing has many properties, following are important for building
bilinear pairing.

bilinearity:
w(P + R ,Q) = w(P ,Q)w(R ,Q)

w(P ,Q + R) = w(P ,Q)w(P ,R)

for all P ,Q,R ∈ E [m],

non-degeneracy: If w(P ,Q) = 1 for all Q ∈ E [m], then P = O.

computability: Miller’s algorithm determines function fP for
given P ∈ E (K ).
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Weil pairing

Weil pairing - building bilinear pairing - PROBLEM

Let P ∈ E (K ) be point that has order m, m prime and prime to the
characteristic of K .
We cloud make bilinear pairing like this:

G1 = 〈P〉
GT is the group of mth roots of unity in K

ê(Q,R) = w(Q,R) for all Q,R ∈ 〈P〉
Note: 〈P〉 ⊆ E [m] and Im(w) is actually the group of mth roots of
unity in K .
However, these is a PROBLEM! w(P ,Q) = 1⇔ P and Q are
linearly dependent.
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Weil pairing

Weil pairing - building bilinear pairing - SOLUTION

Bilinear pairing can be define more generally, like a mapping
ê : G1 × G2 → GT that satisfies still the same conditions and in
addition G2 is isomorphic to G1.
There is a way how to find convenient point Q ∈ E (K ) that is linearly
independent of P and generates cyclic group of the same order like P .
Then we can use Weil pairing to define bilinear pairing:

G1 = 〈P〉
G2 = 〈Q〉
GT is the group of mth roots of unity in K

ê(S ,R) = w(S ,R) for all S ∈ 〈P〉 and for all R ∈ 〈Q〉
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Weil pairing

Thank you for your attention.
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