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Automatic sequences

Definition (k-automatic sequence)

An infinite sequence a = (a)s>0 over a finite alphabet is said to be
k-automatic if there exists a deterministic finite automaton (with
output associated with the states) such that after completely
processing the input n expressed in base k, the automaton reaches
some state g with output a,.

@ Thue-Morse sequence: t = t(0)t(1)#(2)... = 011010011001 ...
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Definition (k-automatic sequence)

An infinite sequence a = (a)s>0 over a finite alphabet is said to be
k-automatic if there exists a deterministic finite automaton (with
output associated with the states) such that after completely
processing the input n expressed in base k, the automaton reaches
some state g with output a,.

@ Thue-Morse sequence: t = t(0)t(1)#(2)... = 011010011001 ...
@ Fibonacci-automatic sequences
e Infinite Fibonacci word: f = f(0)f(1)f(2)...=01001010...
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Automatic sequences

Definition (k-automatic sequence)

An infinite sequence a = (a)s>0 over a finite alphabet is said to be
k-automatic if there exists a deterministic finite automaton (with
output associated with the states) such that after completely
processing the input n expressed in base k, the automaton reaches
some state g with output a,.

@ Thue-Morse sequence: t = t(0)t(1)#(2)... = 011010011001 ...
@ Fibonacci-automatic sequences
e Infinite Fibonacci word: f = f(0)f(1)f(2)...=01001010...

@ Tribonacci sequences
@ Tetranacci sequences
o ...
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Generating automatic sequence

start —

1

Finite automaton generating the Thue-Morse sequence t

@ Thue-Morse sequence t = t(0)t(1)t(2)...=011010011001 ...
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Generating automatic sequence

start —

1

Finite automaton generating the Thue-Morse sequence t

@ Thue-Morse sequence t = t(0)t(1)t(2)...=011010011001 ...
@ t(n) is the sum, modulo 2, of the binary digits of n
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Structures and terms

Definition (Structure)
We call following S a structure

S = (D, (Riict, (f)jess (C)kek)

D... a domain (some set)

(Ri)ics - - . a family of relations on D

(f)jey - - - a family of functions from D" to D

(Ck)kek - - - constants of D

The set {(Ri)ic1, (f)jecs, (ck)kek } is called the language of the
structure S. In addition, symbols x,y,z,...,V,A,—~,V,3, —, <, = are
in S.
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Structures and terms

Definition (Structure)
We call following S a structure

S = (D, (Riict, (f)jess (C)kek)

D... a domain (some set)

(Ri)ics - - . a family of relations on D

(f)jey - - - a family of functions from D" to D

(Ck)kek - - - constants of D

The set {(Ri)ic1, (f)jecs, (ck)kek } is called the language of the
structure S. In addition, symbols x,y,z,...,V,A,—~,V,3, —, <, = are
in S.

Definition (Term)
The terms are defined by induction following two rules:
@ any variable and constant is a term,
Q if fiis a n-ary function and ti, ..., t, are terms, then fi(#;,...,t,) is
a term. )
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Definition (Formula)
The formulae are generated by four rules:
@ if 1, > are terms, then t; = b is a formula,

@ if R is a n-ary relation and &, . .., t, are terms, then R;(t;, ..., t,)
is a formula,

Q if p, d are formulae, then p vV &, p A, —p, 0 — . <> ® are
formulae,

© if is a formula and x is a variable, then Vx¢, 3x are formulae.

4

6/21 Jan Butora Combinatorics on words and automated proving Il



Formulae

Definition (Formula)
The formulae are generated by four rules:
@ if 1, > are terms, then t; = b is a formula,

Q if Riis a n-ary relation and ti, .. ., t, are terms, then R;(t;, ..., t,)
is a formula,

Q if p, d are formulae, then p V &, p A, —p, p — . <> ® are
formulae,

Q if ¢ is a formula and x is a variable, then Vxy, 3x are formulae.

4

Definition (Free variable)

We call free variable a variable in formula without quantifier.
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Formulae

Definition (Formula)

The formulae are generated by four rules:
@ if 1, > are terms, then t; = b is a formula,

Q if Riis a n-ary relation and ti, .. ., t, are terms, then R;(t;, ..., t,)
is a formula,

Q if p, d are formulae, then p V &, p A, —p, p — . <> ® are
formulae,

Q if ¢ is a formula and x is a variable, then Vxy, 3x are formulae.

.

Definition (Free variable)
We call free variable a variable in formula without quantifier.

Definition (Sentence)
We call sentence a formula without free variable.

6/21 Jan Butora Combinatorics on words and automated proving Il



Theories and equivalent structures

Definition (Decidable theory)
Given a structure S, the set of the sentences true for S is the theory

of S, denoted by Th(S).
The theory Th(S) is called decidable if there exists an algorithm

which decides if any sentence of S is true or false for S.
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Theories and equivalent structures

Definition (Decidable theory)

Given a structure S, the set of the sentences true for S is the theory
of S, denoted by Th(S).

The theory Th(S) is called decidable if there exists an algorithm
which decides if any sentence of S is true or false for S.

Definition (Equivalent structures)

We say that the structures S and S’ with the same domain D are
equivalent if the sets definable in S are the same as in S'.

N,
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Theories and equivalent structures

Definition (Decidable theory)

Given a structure S, the set of the sentences true for S is the theory
of S, denoted by Th(S).

The theory Th(S) is called decidable if there exists an algorithm
which decides if any sentence of S is true or false for S.

Definition (Equivalent structures)

We say that the structures S and S’ with the same domain D are
equivalent if the sets definable in S are the same as in S'.

Structures (w,+) and (w, +, <) are equivalent.
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Theories and equivalent structures

Definition (Decidable theory)

Given a structure S, the set of the sentences true for S is the theory
of S, denoted by Th(S).

The theory Th(S) is called decidable if there exists an algorithm
which decides if any sentence of S is true or false for S.

Definition (Equivalent structures)

We say that the structures S and S’ with the same domain D are
equivalent if the sets definable in S are the same as in S'.

Structures (w,+) and (w, +, <) are equivalent.

@ Just consider formula (3z)(x + z = y) in (w, +).
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Presburger artihmetic

Definition (Presburger arithmetic)

We call the theory Th({w, +)) Presburger arithmetic.
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Presburger artihmetic

Definition (Presburger arithmetic)

We call the theory Th({w, +)) Presburger arithmetic.

"Chicken McNuggets” theorem can be described in Presburger
arithmetic:

(Yn> 433x,y,z > 0 such that n = 6x + 9y + 20z) A

—(3x,y,z > 0 such that 43 = 6x + 9y + 202)
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Number representation

¥ ={0,1}... binary alphabet
0 0 1

Y= N ... n-tuples of integers
0 0 1
0 1 1
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Number representation

¥ ={0,1}... binary alphabet

0 0 1

Y= N ... n-tuples of integers
0 0 1
0 1 1

B = {w € ¥j|the bottom row of w is the sum of the top two rows}

0 1 1
For example | 0 0 1| e€B
1 0 0
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Checking addition in Presburger arithmetic

{la,b,c]:a+b=c} {la,b,c]:a+b+1=c+k}
{la,b,c]:a+b+1=c}

(23 0

{[a7b,C]:a+b: C+k}

Checking addition with carry in base k
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Definability of sequences

Let p > 2 and s: w — Abe a sequence with values in a finite
alphabet A C w.

Definition (p-definability)

Consider the structure(w, +, Vp), where the function V,, is defined as
Vo(x) = p", where p" is the greatest power of p dividing x (x # 0)

A sequence s is p-definable if for each letter a € A, there exists a
first-order formula ¢, of (w, +, V,) such that

s7'(a) = {n € w|pa(n) is truein (w,+, Vp)}
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Example: 2-automatic sequence

Let p: w — {0, 1} be the characteristic sequence of the powers of 2:
011010001000000010. ..

pn = 1if nis power of 2, p, = 0 otherwise
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Example: 2-automatic sequence

Let p: w — {0, 1} be the characteristic sequence of the powers of 2:
011010001000000010. ..

pn = 1if nis power of 2, p, = 0 otherwise

@ pis 2-automatic:
The sequence p is computed by the following finite automaton
with output.

0,1

0
start a1/0 1 q% 1 qs/0
N NN

An automaton computing p in base 2
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Example: 2-definable sequence

Let p: w — {0, 1} be the characteristic sequence of the powers of 2:
011010001000000010. ..

pn = 1if nis power of 2, p, = 0 otherwise
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Example: 2-definable sequence

Let p: w — {0, 1} be the characteristic sequence of the powers of 2:
011010001000000010. ..

pn = 1if nis power of 2, p, = 0 otherwise

@ pis 2-definable:
Let Py(x) be the formula V>(x) = x; then

p~'(1) = {new|Ps(n)istruein (w,+, Va)}

p~'(0) = {n e w|Px(n)is false in (w,+, Vo)}
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p-automatic vs. p-definable

Letp > 2 and's : w — A be a sequence with values in a finite
alphabet A C w. Then s is p-automatic if and only if s is p-definable.
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p-automatic vs. p-definable

Letp > 2 and's : w — A be a sequence with values in a finite
alphabet A C w. Then s is p-automatic if and only if s is p-definable.

Theorem
Letp>2,m>1ands:w™— Abe asequence. Then s is
p-automatic if and only if s is p-definable.

A
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p-automatic sets

Definition
Letp>2,m>1and M C w™. We say that M is p-automatic if its
characteristic sequence sy : w™ — {0, 1} defined by

sp=1<n=(n,....,np) eM

is p-automatic.
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p-automatic sets

Definition
Letp>2,m>1and M C w™. We say that M is p-automatic if its
characteristic sequence sy : w™ — {0, 1} defined by

sp=1<n=(n,....,np) eM

is p-automatic.

v

Equivalently M is p-automatic if and only if there is a finite automaton
accepting set {w € {0,...,p—1}"|[w], € M}
where (W], = wop* + wip=" + ...+ wip°
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p-definable sets

Definition

Let m > 1. We say that set M C w is p-definable if there exists a
formula ¢ such that

M={(n,...,nm) € w™|P(N,...,Nm)is truein (w,+, Vp)}

The set of powers of 2 is 2-definable.
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Characterisation of p-automatic sets

Letm>1and M C w™. Letp > 2. Then M is p-automatic if and only
if M is p-definable.
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Characterisation of p-automatic sets

Letm>1and M C w™. Letp > 2. Then M is p-automatic if and only
if M is p-definable.

«: Take formula ¢ of (w, +, V}) defining

M, ={(m,...,nm) € " |$(ny,...,Nm)is truein (w,+, Vp)}
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Characterisation of p-automatic sets

Letm>1and M C w™. Letp > 2. Then M is p-automatic if and only
if M is p-definable.

«: Take formula ¢ of (w, +, V}) defining
M, ={(m,...,nm) € " |$(ny,...,Nm)is truein (w,+, Vp)}

Construct a finite automaton A, computing M
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Characterisation of p-automatic sets

Letm>1and M C w™. Letp > 2. Then M is p-automatic if and only
if M is p-definable.

«: Take formula ¢ of (w, +, V}) defining
M, ={(m,...,nm) € " |$(ny,...,Nm)is truein (w,+, Vp)}

Construct a finite automaton A, computing M
For simplicity, we’ll work with structure (w, Ry, Ry,)
R.(x,y,z)isrelaton x+y =z

Ry, (x,y) is relation Vp(x) =y

(w, Ry, Ry, ) is equivalent to (w, +, Vp)
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Proof - equality

Sets M_, M., My, are p-automatic. They are accepted by automata
A:a A+7 AVp

{la,b] : a = b} {[a, b]}

,b]: b
start—»@ {la.bl: a7 b} Q2

Automaton A- checking equality in base p
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Proof - addition

{la,b,c]:a+b=rc} {la,b,c]:a+b+1=c+p}
{la,b,c]:a+b+1=c}

(23 0

{la,b,c]:a+b=c+p}

Automaton A, checking addition with carry in base p
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Proof - the greatest power of p

start —

Automaton AV2 in base 2
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Proof - the greatest power of p

start —

Automaton AV2 in base 2
Now by induction assume that automata A, and A, are constructed.
Obtain automata A,y y, Asxe, A
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The finish

Th((w,+)) and Th ({(w, +, V,)) are decidable theories.
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Th((w,+)) and Th ({(w, +, V,)) are decidable theories.

There is an algorithm that, given a predicate phrased using only the
universal and existential quantifiers, indexing into a given automatic
sequence a, addition, subtraction, logical operations, and
comparisons, will decide the truth of that proposition.
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