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Abstract. We show the power of discrete calculus, especially the summation by parts formula,
in evaluating Fibonacci and Tribonacci sums with polynomial and exponential weights. We
provide new, short, and elementary proofs of several known results, and derive new identities
involving Fibonacci, Lucas, and Tribonacci numbers.

1. INTRODUCTION. Everyone is familiar with integration by parts as a basic
method for evaluating definite integrals; surprisingly, it seems that its discrete version,
summation by parts, which is useful for calculating the values of finite sums, is much
less known. The technique goes back to N. H. Abel’s 1826 paper [1] on the binomial
series, and forms the core of modern proofs of Abel’s criterion for the convergence of
an infinite series. One goal of the present paper is to show that summation by parts
is not merely an ad-hoc trick serving to prove Abel’s test, and to convince the reader
that it should be in every mathematician’s toolbox. A second goal is to demonstrate
the power of this technique by providing short and elementary proofs of some old and
new identities involving the Fibonacci, Lucas, and Tribonacci numbers.

We will focus on weighted Fibonacci sums of the form
∑n

i=0 Fiwi, where Fi are
the Fibonacci numbers, and wi are prescribed weights. We are mainly interested in
polynomial weights, which are discussed in the classical book [12], as well as expo-
nential weights, which are treated in [5]. The identities that we will obtain apply not
only to the Fibonacci sequence, but to any sequence {Gi}∞i=0 satisfying the recurrence
relation Gi+2 = Gi+1 +Gi and having arbitrary initial values G0 and G1. Following
the book [4], such sequences are known as the Gibonacci numbers (shorthand for gen-
eralized Fibonacci numbers). One advantage is that we do not need to specify whether
we deal with the Fibonacci sequence whose initial values are F0 = 0 and F1 = 1,
or with the sequence whose initial values are F0 = F1 = 1; both choices appear fre-
quently in literature. More importantly, our identities apply also to the Lucas sequence,
which is defined by the recurrence relation Li+2 = Li+1 + Li and the initial values
L0 = 2, L1 = 1.

For example, using the summation by parts formula, we can easily derive identities
such as

n∑
i=0

Gic
i =

Gnc
n+2 +Gn+1c

n+1 + (c− 1)G0 −G1c

c2 + c− 1
,

which holds for any Gibonacci sequence (see Section 4).
To demonstrate that the methods of discrete calculus are not limited to weighted

Gibonacci sums, we will also consider weighted sums
∑n

i=0 Tiwi involving the Tri-
bonacci numbers. These numbers satisfy the relation Ti+3 = Ti+2 + Ti+1 + Ti, and
their history goes back to C. Darwin’s Origin of Species as well as the 1914 article [3]
by the Russian mathematician N. A. Agronomof. More details can be found in the
enlightening recent paper [20].
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The outline of the paper is as follows: We begin with a brief introduction to discrete
calculus—a discrete version of differential and integral calculus, whose basic opera-
tions are differences and antidifferences (for more information on discrete calculus,
see [10, 16, 18]). We include a short derivation of the summation by parts formula,
and then show how to find antidifferences for the Gibonacci and Tribonacci numbers.
Using these results, we will successively evaluate several types of weighted Gibonacci
and Tribonacci sums with exponential and polynomial weights. We will provide sim-
ple proofs of several known results, and obtain new identities involving the Gibonacci
and Tribonacci numbers. For example, the recurrence formulas for Gibonacci and Tri-
bonacci sums with polynomial weights presented in Sections 5 and 6 are new. We will
conclude the exposition with a brief look at sums containing squares of Gibonacci and
Tribonacci numbers. Throughout the whole paper, we include several exercises for the
reader.

There are numerous sources dealing with weighted Fibonacci and Tribonacci sums,
see e.g., [2, 7, 11] and the references therein, but as far as we are aware, none of
them uses summation by parts. The reader is invited to compare our approach with
Gauthier’s differential method described in [8] and [12, Chapter 25], which is more
laborious and uses Binet’s explicit formula for the Fibonacci numbers, and with the
derivations in [5], which are based on generating functions.

2. A SHORT INTRODUCTION TO DISCRETE CALCULUS. Given a real or
complex sequence {ai}i∈Z, the basic operation in discrete calculus is the difference

∆ai = ai+1 − ai, i ∈ Z.

Conversely, an antidifference (or indefinite sum) of {ai}i∈Z is an arbitrary sequence
{bi}i∈Z such that ∆bi = ai for all i ∈ Z; we write∑

ai = bi.

Antidifferences are similar to antiderivatives; for example, they are unique up to a
constant. The expression

∑
ai is only a formal symbol, but it suggests than antidif-

ferences are useful for calculating finite sums (similarly, antiderivatives are helpful in
calculating definite integrals). Indeed, if {bi}i∈Z is an antidifference of {ai}i∈Z, then

q∑
i=p

ai =
q∑

i=p

(bi+1 − bi) = [bi]
q+1

i=p = bq+1 − bp (1)

whenever p, q ∈ Z and p ≤ q; this is the fundamental theorem of discrete calculus.
Finding antidifferences in closed form is not always easy; some basic results and

techniques are described in [10, 16]. In short, formulas for differences often give rise
to formulas for antidifferences. Here we restrict ourselves only to a single example
that will be needed throughout the rest of the paper. The difference of the geometric
progression {ci}i∈Z is

∆ci = ci+1 − ci = ci(c− 1). (2)

If c ̸= 1, we can divide by c− 1 and obtain

∆

(
ci

c− 1

)
= ci.
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Hence, the antidifference of {ci}i∈Z is

∑
ci =

ci

c− 1
.

Using this result and the fundamental identity (1), we obtain the well-known formula
for the sum of a finite geometric series:

n∑
i=0

ci =

[
ci

c− 1

]n+1

i=0

=
cn+1 − 1

c− 1
.

The product rule for differences is

∆(aibi) = ai+1bi+1 − aibi = ai+1bi+1 − ai+1bi + ai+1bi − aibi

= ai+1∆bi + (∆ai)bi.

Rearranging gives

(∆ai)bi = ∆(aibi)− ai+1∆bi,

and summing over i = p, . . . , q yields the summation by parts formula

q∑
i=p

(∆ai)bi = [aibi]
q+1

i=p −
q∑

i=p

ai+1∆bi. (3)

This is the discrete version of integration by parts, and will be our main tool. We have
already mentioned that the identity goes back to Abel’s paper [1], where it appeared
in the proof of “Lehrsatz III” (this part of the paper and its English translation is also
available in [19, subsection 16.1.3]) in the slightly different but equivalent form

ε0p0 + ε1(p1 − p0) + ε2(p2 − p1) + · · ·+ εm(pm − pm−1)

= p0(ε0 − ε1) + p1(ε1 − ε2) + · · ·+ pm−1(εm−1 − εm) + pmεm.

This equality is obvious by inspection, and Abel felt no need to explain it. On the other
hand, the above-mentioned form (3) seems more useful for calculations, and exhibits
the similarity to integration by parts.

To provide an example, we evaluate the sum
∑n

i=0 2
ii. Noting that 2i = ∆2i

(cf. (2) with c = 2) and ∆i = (i+ 1)− i = 1, we use the formula (3) with ai = 2i,
bi = i to calculate

n∑
i=0

2ii =
n∑

i=0

(∆2i)i = [2ii]n+1
i=0 −

n∑
i=0

2i+1

= 2n+1(n+ 1)− 2(2n+1 − 1) = (n− 1)2n+1 + 2.

3. THE ART OF FINDING ANTIDIFFERENCES. To be able to evaluate weight-
ed Gibonacci sums, we need the differences and antidifferences for the Gibonacci
numbers. The recurrence relation Gi+2 = Gi+1 +Gi makes it possible to extend the
definition of Gi to all i ∈ Z. Consequently, for all i ∈ Z we have

∆Gi = Gi+1 −Gi = Gi−1,
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and therefore ∑
Gi = Gi+1.

With this result, it is easy to recover the classical result
∑n

i=1 Gi = Gn+2 −G2; see
[4, p. 24] for a nice combinatorial proof, and [21, Chapter 1] for a proof in the spirit of
discrete calculus. Indeed, the fundamental equation (1) yields

n∑
i=1

Gi =
n∑

i=1

∆Gi+1 = [Gi+1]
n+1

i=1 = Gn+2 −G2. (4)

If we restrict ourselves to Gibonacci numbers with even or odd indices, we get

∆G2i = G2i+2 −G2i = G2i+1,

∆G2i−1 = G2i+1 −G2i−1 = G2i,

and therefore ∑
G2i+1 = G2i,

∑
G2i = G2i−1.

From these relations and the fundamental equation (1), we obtain the classical identi-
ties

n∑
i=1

G2i =
n∑

i=1

∆G2i−1 = [G2i−1]
n+1

i=1 = G2n+1 −G1, (5)

n∑
i=1

G2i−1 =
n∑

i=1

∆G2i−2 = [G2i−2]
n+1

i=1 = G2n −G0 (6)

(see e.g., [4, p. 32], or [21, Chapter 1] for the special case Gi = Fi).
We also need an antidifference for the Tribonacci numbers, which satisfy the recur-

rence relation

Ti+3 = Ti+2 + Ti+1 + Ti. (7)

Again, we leave the initial values T0, T1, T2 unspecified to make our formulas more
general. For example, the papers [5, 20] take T0 = T1 = 0 and T2 = 1, while [3, 7]
use T0 = 0 and T1 = T2 = 1. Another natural choice is T0 = T1 = 1 and T2 = 2;
in this setting, Tn corresponds to the number of tilings of a 1 × n rectangle with
monominoes, dominoes, and trominoes.1

1This combinatorial interpretation of the Tribonacci numbers immediately leads to Agronomof’s identity
discussed in [20], namely

Tn+p = TpTn + Tp−1Tn−1 + Tp−2Tn−1 + Tp−1Tn−2

(the subscripts in [20] are shifted because of the initial conditions). The first term TpTn on the right-hand
side gives the number of tilings of a 1 × (n + p) rectangle such that no tile covers cells p and p + 1 at the
same time, the second term Tp−1Tn−1 is the number of tilings such that cells p and p + 1 are covered by
a single domino, and the last two terms Tp−2Tn−1 and Tp−1Tn−2 count the tilings where cells p and p+ 1

are covered by a single tromino (there are two ways of doing this).
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The recurrence relation (7) makes it possible to consider Ti for all i ∈ Z (in partic-
ular, our later calculations will involve T−1, which is just T2 − T1 − T0). Then, for all
i ∈ Z, we have

∆Ti+1 = Ti+2 − Ti+1 = Ti + Ti−1,

∆Ti−1 = Ti − Ti−1 = Ti−2 + Ti−3.

Therefore, ∆(Ti+1 + Ti−1) = 2Ti, which means that∑
Ti =

1

2
(Ti+1 + Ti−1). (8)

An immediate application of the previous equality and the fundamental formula (1) is
the identity

n∑
i=1

Ti =

[
1

2
(Ti+1 + Ti−1)

]n+1

i=1

=
1

2
(Tn+2 + Tn − T2 − T0). (9)

This result includes as a special case formula (7) from [20], where T0 = T1 = 0 and
T2 = 1.

We close this section with a pair of exercises:
• Verify that

∑
T2i =

1
2
(T2i−1 + T2i−2) and

∑
T2i+1 = 1

2
(T2i−1 + T2i). Use the

fundamental identity (1) to determine
∑n

i=0 T2i and
∑n

i=0 T2i+1.
• Verify that

∑
T3i =

1
2
(T3i−1 − T3i−3). Try to guess

∑
T3i+1 and

∑
T3i+2. Cal-

culate
∑n

i=0 T3i,
∑n

i=0 T3i+1 and
∑n

i=0 T3i+2.

The sums
∑n

i=0 T2i and
∑n

i=0 T3i were evaluated in [7] in the special case when
T0 = 0 and T1 = T2 = 1.

4. GIBONACCI SUMS WITH EXPONENTIAL WEIGHTS. We are finally ready
to proceed to the next goal of this paper and demonstrate that summation by parts is
an excellent tool for the evalutation of weighted Fibonacci and Tribonacci sums.

Let us begin with Gibonacci sums of the form E(n) =
∑n

i=0 Gic
i, i.e., sums with

exponential weights. We will encounter a phenomenon that is familiar from integration
by parts: Summation by parts does not lead directly to the result, but instead yields an
equation for the unknown value E(n). Assume that c ̸= 0, recall that Gi = ∆Gi+1,
and apply the formula (3) with ai = Gi+1 and bi = ci to get

E(n) =
n∑

i=0

Gic
i =

n∑
i=0

∆(Gi+1)c
i =

[
Gi+1c

i
]n+1

i=0
−

n∑
i=0

Gi+2(c
i+1 − ci)

= Gn+2c
n+1 −G1 −

c− 1

c2

n+2∑
i=2

Gic
i

= Gn+2c
n+1 −G1 −

c− 1

c2
(
E(n) +Gn+1c

n+1 +Gn+2c
n+2−G0 −G1c

)
.

Solving this equation for E(n) and simplifying the result using Gn+2 = Gn +Gn−1,
we obtain the identity

n∑
i=0

Gic
i =

Gnc
n+2 +Gn+1c

n+1 + (c− 1)G0 −G1c

c2 + c− 1
, (10)
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which holds for all c ∈ C such that c2 + c− 1 ̸= 0 (note that the result is obviously
true for c = 0).2 This identity generalizes formula (11) from [5], which deals with the
case Gi = Fi.

In a similar way, we can deal with weighted sums involving only Gibonacci num-
bers with either even or odd indices, which we denote by A(n) =

∑n
i=0 G2ic

i and
B(n) =

∑n
i=0 G2i+1c

i. Recalling that G2i = ∆G2i−1 and G2i+1 = ∆G2i, we ap-
ply the summation by parts formula (3) with bi = ci, and ai = G2i−1 or ai = G2i,
respectively. If c ̸= 0, we get

A(n) =
[
G2i−1c

i
]n+1

i=0
−(c− 1)

n∑
i=0

G2i+1c
i = G2n+1c

n+1−G−1 − (c− 1)B(n),

B(n) =
[
G2ic

i
]n+1

i=0
−(c− 1)

n∑
i=0

G2i+2c
i = G2n+2c

n+1 −G0 −
c− 1

c

n+1∑
i=1

G2ic
i

= G2n+2c
n+1 −G0 −

c− 1

c
(G2n+2c

n+1 +A(n)−G0).

Solving this system of two linear equations for A(n) and B(n) yields

A(n) =
(c− 1)cn+1G2n+2 − cn+2G2n+1 + cG−1 + (1− c)G0

c2 − 3c+ 1
,

B(n) =
(c− 1)cn+1G2n+1 − cn+1G2n+2 + (1− c)G−1 +G0

c2 − 3c+ 1
.

Finally, applying the identities G2n+2 = G2n +G2n+1 and G−1 = G1 −G0, we get

n∑
i=0

G2ic
i =

(c− 1)cn+1G2n − cn+1G2n+1 + cG1 + (1− 2c)G0

c2 − 3c+ 1
,

n∑
i=0

G2i+1c
i =

(c− 2)cn+1G2n+1 − cn+1G2n + (1− c)G1 + cG0

c2 − 3c+ 1

for each c ∈ C such that c2 − 3c+ 1 ̸= 0. (Again, the remaining cases can be dealt
with using L’Hôpital’s rule.) These formulas might be known, but we were unable to
find them in the literature even in the special case when Gi = Fi.

5. GIBONACCI SUMS WITH POLYNOMIAL WEIGHTS. We now proceed to
Gibonacci sums of the form Rk(n) =

∑n
i=1 Gii

k, i.e., sums with polynomial weights.
This section will be somewhat formula-heavy, but all calculations are elementary, re-
lying only on the binomial theorem and summation by parts. However, they demon-
strate an interesting technique: Instead of giving the explicit value of Rk(n), sum-
mation by parts leads to a new recurrence relation that expresses Rk(n) in terms of
R0(n), . . . , Rk−1(n).

2What happens if c2 + c − 1 = 0? This equation has roots c1,2 = (−1 ±
√
5)/2. The left-hand side

of (10) is a continuous of function of c; hence, we can calculate its value at cj as the limit of the right-hand
side of (10) for c → cj . Using L’Hôpital’s rule, we obtain

n∑
i=0

Gic
i
j =

Gn(n+ 2)cn+1
j +Gn+1(n+ 1)cnj +G0 −G1

2cj + 1
, j ∈ {1, 2}.
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For k ≥ 1, the binomial theorem yields

∆ik = (i+ 1)k − ik =
k−1∑
j=0

(
k

j

)
ij. (11)

Therefore, the summation by parts formula (3) with ai = Gi+1 and bi = ik gives

Rk(n) =
[
Gi+1i

k
]n+1

i=1
−

n∑
i=1

Gi+2

k−1∑
j=0

(
k

j

)
ij

=
[
Gi+1i

k
]n+1

i=1
−

k−1∑
j=0

(
k

j

)
n∑

i=1

Gi+2(i+ 2− 2)j

= Gn+2(n+ 1)k −G2 −
k−1∑
j=0

(
k

j

)
j∑

l=0

(
j

l

)
(−2)j−l

n∑
i=1

Gi+2(i+ 2)l.

Here we have interchanged the order of sums, and then invoked the binomial theorem.
Since

∑n
i=1 Gi+2(i+ 2)l = Rl(n+ 2)−Rl(2), we get the promised recurrence re-

lation

Rk(n) = Gn+2(n+ 1)k −G2

−
k−1∑
j=0

(
k

j

)
j∑

l=0

(
j

l

)
(−2)j−l(Rl(n+ 2)−G1 − 2lG2), k ∈ N.

Using the value of R0(n) from (4), we can now calculate (it is best to use computer
software such as Wolfram Mathematica)

n∑
i=1

Gii = (n+ 1)Gn+2 −Gn+4 +G1 +G2,

n∑
i=1

Gii
2 = (n+ 1)2Gn+2 − (2n+ 3)Gn+4 + 2Gn+6 − 3G1 − 5G2,

n∑
i=1

Gii
3 = (n+ 1)3Gn+2 − (3n2 + 9n+ 7)Gn+4 + 6(n+ 2)Gn+6

− 6Gn+8 + 19G1 + 31G2,

etc. In the special cases when Gi = Fi or Gi = Li, the formulas up to k = 4 are given
in [12, Section 25.2]. Also, the first formula is equivalent to Glaister’s result from [9].

Essentially the same method works for sums with polynomial weights and Gi-
bonacci numbers with even or odd indices; denote them by Ek(n) =

∑n
i=1 G2ii

k

and Ok(n) =
∑n

i=1 G2i−1i
k. The new idea here is that summation by parts will lead

to a system of recurrence relations for Ek and Ok. Indeed, for k ≥ 1, we use (11) and
summation by parts to obtain

Ek(n) =
[
G2i−1i

k
]n+1

i=1
−

n∑
i=1

G2i+1

k−1∑
j=0

(
k

j

)
ij
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=
[
G2i−1i

k
]n+1

i=1
−

k−1∑
j=0

(
k

j

)
n∑

i=1

G2i+1(i+ 1− 1)j

= G2n+1(n+ 1)k −G1 −
k−1∑
j=0

(
k

j

)
j∑

l=0

(
j

l

)
(−1)j−l

n∑
i=1

G2i+1(i+ 1)l

= G2n+1(n+ 1)k −G1 −
k−1∑
j=0

(
k

j

)
j∑

l=0

(
j

l

)
(−1)j−l(Ol(n+ 1)−G1)

for all k ∈ N. Similarly,

Ok(n) =
[
G2i−2i

k
]n+1

i=1
−

n∑
i=1

G2i

k−1∑
j=0

(
k

j

)
ij

=
[
G2i−2i

k
]n+1

i=1
−

k−1∑
j=0

(
k

j

)
n∑

i=1

G2ii
j

= G2n(n+ 1)k −G0 −
k−1∑
j=0

(
k

j

)
Ej(n)

for all k ∈ N. Using these recurrence formulas for Ek(n), Ok(n) and the values of
E0(n), O0(n) from (5) and (6), one can calculate

n∑
i=1

G2ii = (n+ 1)G2n+1 −G2n+2 +G0, (12)

n∑
i=1

G2i−1i = (n+ 1)G2n −G2n+1 −G0 +G1, (13)

n∑
i=1

G2ii
2 = (n+ 1)2G2n+1 − (2n+ 3)G2n+2 + 2G2n+3 +G0 − 2G1, (14)

n∑
i=1

G2i−1i
2 = (n+ 1)2G2n − (2n+ 3)G2n+1 + 2G2n+2 − 3G0 +G1, (15)

etc. Special cases of the formula (14) corresponding to Gi = Fi and Gi = Li are in
agreement with identities (11) and (14) in [13].

With the help of (12), it is straightforward to calculate

n∑
j=1

G2n−2jj =−
n∑

j=1

G2(n−j)(n− j) + n
n∑

j=1

G2(n−j) = G2n − nG1 + (n− 1)G0.

This result generalizes Theorems 4.1 and 4.2 from [6], which deal with the Fibonacci
and Lucas numbers. In a similar way, using (12) again, we obtain

n−1∑
j=1

G2n−2jj=−
n−1∑
j=1

G2(n−j)(n− j) + n
n−1∑
j=1

G2(n−j) = G2n − nG1 −G0.
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A result of this type appeared as identity 3.12 in the recent paper [14], where the
coefficients of G1 and G0 are swapped; a numerical calculation indicates that our
version is correct.

6. WEIGHTED TRIBONACCI SUMS. We now switch to weighted sums involv-
ing the Tribonacci numbers. This section will be a short one because the methods of
Sections 4 and 5 are still applicable without any significant changes. We just need to
recall that, according to (8), we have

∑
Ti =

1
2
(Ti+1 + Ti−1).

First, we evaluate the weighted Tribonacci sum H(n) =
∑n

i=0 Tic
i with exponen-

tial weights. For c ̸= 0, the summation by parts formula (3) with ai =
1
2
(Ti+1 + Ti−1)

and bi = ci gives

H(n) =
n∑

i=0

∆

(
1

2
(Ti+1 + Ti−1)

)
ci =

1

2

[
(Ti+1 + Ti−1)c

i
]n+1

i=0

−c− 1

2

n∑
i=0

(Ti+2 + Ti)c
i =

Tn+2 + Tn

2
cn+1 − T1 + T−1

2

−c− 1

2

(
1

c2
(
Tn+2c

n+2 + Tn+1c
n+1 +H(n)− T0 − T1c

)
+H(n)

)
.

Solving this equation for H(n) leads to the identity

n∑
i=0

Tic
i =

cn+1(1− c)Tn+1 + cn+2Tn+2 + cn+3Tn + c2T−1 + (c− 1)T0 − cT1

c3 + c2 + c− 1
,

which holds for all c ∈ C such that c3 + c2 + c− 1 ̸= 0. This result generalizes for-
mula (14) from [5], which deals with the case T0 = T1 = 0 and T2 = 1.

Second, consider the weighted sum Uk(n) =
∑n

i=1 Tii
k with polynomial weights.

For k ≥ 1, summation by parts with ai =
1
2
(Ti+1 + Ti−1) and bi = ik gives

Uk(n) =
n∑

i=1

∆

(
1

2
(Ti+1 + Ti−1)

)
ik =

[
1

2
(Ti+1 + Ti−1)i

k

]n+1

i=1

−
n∑

i=1

1

2
(Ti+2 + Ti)((i+ 1)k − ik) =

1

2
(Tn+2 + Tn)(n+ 1)k − 1

2
(T2 + T0)

−1

2

k−1∑
j=0

(
k

j

)(
n∑

i=1

Tii
j +

n∑
i=1

Ti+2(i+ 2− 2)j
)
.

Applying the binomial theorem as in Section 5, we get the recurrence relation

Uk(n) =
1

2
(Tn+2 + Tn)(n+ 1)k − 1

2
(T2 + T0)

−
k−1∑
j=0

(
k

j

)(
Uj(n) +

j∑
l=0

(
j

l

)
(−2)j−l(Ul(n+ 2)− T1 − 2lT2)

)
,
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which expresses Uk(n), k ∈ N, in terms of Uk−1(n), . . . , U0(n). For example, letting
k = 1 and using the value of U0(n) from (9), a straightforward calculation gives

n∑
i=1

Tii =
1

4
((2n+ 1)Tn + 2nTn+2 − Tn+4 + 2T1 + 2T2) .

For T0 = T1 = 0 and T2 = 1, this identity agrees with the formulas in [5, p. 515] and
[2, Eq. (2.17)], where they are written in a slightly different but equivalent form.

An alternative method of evaluating Tribonacci sums with polynomial weights is
described in [2, Section 2].

Following what we did for the Gibonacci numbers, we could continue investigating
sums involving only Tribonacci numbers with even or odd indices. Instead, we leave
this task as an exercise for the reader: Using summation by parts and the antidif-
ferences mentioned in the end of Section 4, find the values of the sums

∑n
i=0 T2ic

i

and
∑n

i=0 T2i+1c
i. For c = −1, your results should agree with the formulas for∑n

i=0(−1)iT2i and
∑n

i=0(−1)iT2i+1 presented in [5, 7].

7. GIBONACCI AND TRIBONACCI SQUARED. We hope the reader is now ea-
ger to discover further identities using discrete calculus. Why not explore sums with
squares of Gibonacci and Tribonacci numbers? Of course, we need antidifferences for
the squared sequences. For the Gibonacci numbers, we have

G2
i = Gi(Gi+1 −Gi−1) = GiGi+1 −GiGi−1 = ∆(Gi−1Gi),

and therefore ∑
G2

i = Gi−1Gi. (16)

This result immediately leads to the formula for the sum of squared Gibonacci numbers

n∑
i=1

G2
i = [Gi−1Gi]

n+1
i=1 = GnGn+1 −G0G1

(see e.g., [4, identity 67]).
Sometimes we also need a second-order antidifference of G2

i , i.e., a first-order an-
tidifference of Gi−1Gi. Clearly, it suffices to find an antidifference for the shifted
sequence GiGi+1, which is done as follows. We calculate

GiGi+1 = (Gi+1 −Gi−1)Gi+1 = G2
i+1 −Gi+1Gi−1,

and apply the Cassini-type identity Gi+1Gi−1 = G2
i + (−1)i(G2

1 −G0G2) (see [4,
identity 46]) to get

GiGi+1 = G2
i+1 −G2

i + (−1)i+1(G2
1 −G0G2)

= ∆G2
i + (G2

1 −G0G2)
(−1)i+1 − (−1)i

2
= ∆

(
G2

i + (G2
1 −G0G2)

(−1)i

2

)
.

Thus, we see that ∑
GiGi+1 = G2

i + (G2
1 −G0G2)

(−1)i

2
. (17)
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The relations (16) and (17) allow us to calculate antidifferences of G2
i or arbitrarily

high order. Armed with this information, the reader will have no trouble solving the
following exercises:

• Use summation by parts to calculate
∑n

i=1 G
2
i i. (For Gi = Fi and Gi = Li, the

result should agree with the identities in [13].)
• Use repeated summation by parts to calculate

∑n
i=1 G

2
i c

i.

And what about squared Tribonacci numbers? The antidifference∑
T 2
i = Ti−1Ti −

1

4
(Ti−1 + Ti−3)

2 (18)

is not easy to discover, but the verification is routine, and we leave this task to the
reader.3 Once we have the formula, it is obvious that

n∑
i=1

T 2
i = TnTn+1 −

1

4
(Tn + Tn−2)

2 − T0T1 +
1

4
(T0 + T−2)

2.

A slightly different but equivalent formula was presented in [15], whose author
merely remarked it can be proved by induction. For an alternative derivation based on
Agronomof’s identity, see [20]; note, however, this derivation deals only with the case
T0 = T1 = 0 and T2 = 1.

8. CONCLUSION. This is the end of our journey into the world of discrete calculus
and weighted sums. We hope the readers will enjoy discovering and proving additional
identities using the tools described in this article. Of course, there is no need to restrict
oneself to Gibonacci and Tribonacci sums. A possible project is to consider sums
involving the Jacobsthal numbers, which are given by

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2.

The simplest combinatorial interpretation is that Jn corresponds to the number of
tilings of a 2× (n− 1) rectangle with dominoes and 2× 2 squares. Additional prob-
lems related to the Jacobsthal numbers are listed in [17]. From the viewpoint of discrete
calculus, an attractive feature of these numbers is that their difference and antidiffer-
ence are easy to express in terms of Jn. A few basic identities involving the Jacobsthal
numbers, which can serve as an inspiration, are available in [22]. The readers will
surely find further ideas to explore.
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